
Doc. no. WG21/N1489=J16/03-0072
Date: 04 July 2003
Reply-To: Bjarne Stroustrup

Texas A&M University
College Station
Texas 77843-3112
Email: bs@cs.tamu.edu

and
Gabriel Dos Reis
INRIA Sophia Antipolis, BP 79
2004 route des Lucioles
06902 Sophia-Antipolis — France
Email: gdr@acm.org

Templates aliases for C++

This note is an expansion on the proposal [2] to add template aliases to
C++. It further discusses the fundamental issue, the solution suggested in
[2] and several possible directions of generalizations to non-template and
non-type settings. We encourage the reader to have copies of the papers [2,
3] in hand while reading this note. This does not constitute a final wording
for inclusion in the working paper; rather it is a collection of ideas as a basis
for further discussions.

1 Parameterized type aliases

C and C++ provide typedef as a mechanism for introducing a new name
for an existing type. With increasing use of parameterized types in C++
libraries and programs, the need for a notion of parameterized type aliases
has been pressing. The famous standard allocator rebind hack is a well-
known simulation of parameterized type aliases and work-around for lack
of language feature. The notion of template alias [2] aims at providing sup-
port for declaring families of aliases. This new feature gives opportunities
for building advanced libraries as those described by Walter Brown [1],
otherwise hard or impossible to achieve within current standard C++ se-
mantics.

With current C++, parameterized aliases for type expressions arew sim-
ulated along the lines of the following example:

--- Example #1 ---
// My own storage allocator
template<class T>
struct MyAllocator {

1



2

// ...
};

// An intermediate class as a means to introduce
// an alias for std::vector<T, MyAllocator<T> >
template<class T>
struct Vec {

typedef std::vector<T, MyAllocator<T> > type;
};

// sample usage
Vec<int>::type v;

While in simple usages like above, the idiom works pretty well, it quickly
breaks down when used in conjunction with parameterized functions. Con-
sider:

--- Example # 2 ---
template<class T>
void process(typename Vec<T>::type& v)
{ /* ... */ }

int main()
{

Vec<int>::type v(275);
process(v); // ERROR: cannot call ‘‘process’’
// ...

}

The breakage comes from the inability to deduce the template argument
list for the function template process; see [2, 3] for further details.

Question: Would the problem go away if one could make T deducible in the
context Vec<T>::type? No, that would solve only part of the problem.
Examples, such as that standard allocator "rebind hack" would not be dealt
with by such deduction. Thus, a general aliasing mechanism is needed.

1.1 Parameterized alias: semantics

As a matter of semantics improvement and syntax simplification, it is sug-
gested in the paper [2] to adopt the notation

template<class T>
using Vec = std::vector<T, MyAllocator<T> >;

with the following meaning:

� it declares Vec as the name of a template of one argument;

Template aliases WG21/N1489



3

� given a template-argument A, the template-id Vec<A> is syntactically
equivalent to std::vector<A, MyAllocator<A> >.

With those semantics, the core ideas behind examples #1 and #2 may be
rephrased as:

template<class T>
using Vec = std::vector<T, MyAlocator<T> >;

template<class T>
void process(Vec<T>& v)
{ /* ... */ }

int main()
{

Vec<int> v(297);
process(v); // OK: calls ‘‘process<int>’’
// ...

}

Now, the call to the function process is satisfactorily resolved because its
declaration is equivalent to

template<class T>
void process(std::vector<T, MyAllocator<T> >&);

which has a form suitable for successful template-argument deduction. The
parameterized type alias feature may be summarized as a mechanism to
declare a template-name, which when presented with a template argument
list produces an alias for the type expression obtained after substitution of
the template arguments into the “initializer”. This name aliasing feature
may be generalized in various ways as discussed in

�
2.3.

1.2 Parameterized alias: syntax

The semantics of the proposed extension seem to cover the fundamental
issues as identified in the papers [1, 2, 3]. However, the syntax may look a
bit contorted. The declaration

template<class T>
using Vec = std::vector<T, MyAllocator<T> >;

roughly speaking, contains five (5) parts:

1. the template parameters declaration template<class T>,

2. the keyword using,

3. the newly-declared template-name Vec,

Template aliases WG21/N1489



4

4. the token =,

5. and the type expression std::vector<T, MyAllocator<T> >.

As a general principle, an alias is an alternate name for an entity. So the
first, third, and fifth parts are necessary: they state that we are introducing
a template with a set of parameters, introducing a new name, and stating
the entity being aliased, respectively. The second (using) and the fourth
(=) parts are syntactic sugar. An alternative choice for a new keyword
would be let — used in BCPL and many functional languages for vari-
able declaration — or alias. However, those are short, probably common
identifiers, with a high potential for breaking existing codes.

On the other hand the sentence

template<class T>
using Vec = std::vector<T, MyAllocator<T> >;

can be read/interpreted as: from now on, I’ll be using Vec<T> as a synonym
for std::vector<T, MyAllocator<T> >. With that reading, the new
syntax for aliasing seems reasonably logical. Therefore, we propose the
following formal syntax for the declaration of a parameterized type alias:

template < template-parameter-list > alias-declaration

alias-declaration:
using identifier = type-id

A key question is: does it fit with/generalize existing name aliasing
mechanism? That topic will be discussed in

�
2.

1.3 Point of declaration

Since an alias-declaration is a declaration , it is important to know the point
of declaration of the alias-name it declares. For reasons discussed below
we propose that the point of declaration of a name declared by an alias-
declaration be immediately after its type-id “initializer”. For example, in

template<class T>
using Vec = std::vector<T, MyAllocator<T> >;

the point of declaration of Vec is just before the semicolon terminating the
declaration. In particular, the following is ill-formed

template<class T>
using List = std::pair<T, List<T>*>;

Template aliases WG21/N1489



5

The reason is that std::pair<T, List<T>*> is not an existing type since
there is no declaration for List.

The core of the rule determining the point of declaration for names in-
troduced by an alias-declaration is not an innovation. It is similar to ex-
isting rule that governs the point of declaration of an enumerator. Indeed,
current Standard text says (3.3.1/3)

The point of declaration for an enumerator is immediately after
its enumerator-definition

That rule was intended to be adapted for namespace-aliases (quote William
Miller); at least current Standard makes

namespace N = N;

ill-formed because there is no existing namespace that the name N (on the
right hand side) resolves to.

1.4 Specializations

Ability to specialize template aliases is a topic that has been discussed a
lot in most papers about “template typedef” or “template aliases”. There
are evidences that it is a useful feature that we should provide along with
template aliases. Herb Sutter [3] gave what we consider compelling exam-
ples, among which the following: Naming a sized-integer type, the size
of which is expressed as a template argument (obviously useful in generic
programming context). Borrowing syntax from that paper, we would have:

template<int> typedef int int_exact; // default alias
template<> typedef char int_exact<8>;
// ...

As pointed out in the paper [2], the above constructs can be expressed with
the template alias mechanism discussed in

�
1.1 and

�
1.2 with the aid of an

auxiliary traits class:

template<int>
struct int_exact_traits {

typedef int type;
};

// create specializations
template<>
struct int_exact_traits<8> {

typedef char type;
};

// and so on...

// create the alias
template<int N>
using int_exact = typename int_exact_traits<N>::type;

Template aliases WG21/N1489



6

A fundamental concern about this approach is: Is the intermediate traits
class necessary? We believe “yes” because an alias is an alternate name for
an entity and the auxiliary class int_exact_traits is just designating
the entity we want to create an alias for. Providing a shorthand that does
not introduce a second name would leave a single name denoting both an
alias and the entities it is an alias for. That has a high potential for creating
confusion.

Therefore, we propose that a template-name introduced by an alias-
declaration should not be specialized. If an alias could be specialized, it
would be difficult — potentially impossible — to resolve combinations of
specializations of the template itself (which of course must be allowed) and
specializations of the alias.

2 General alias declaration

In this section, we would like to explore the extent to which the newly
proposed name aliasing scheme fits and generalizes the existing aliasing
mechanisms, such as typedef and namespace alias. Firstly, we will compare
the parameterized type alias declaration as suggested in

�
1.2 with existing

existing template declaration.
Let us recall that the grammar of a template declaration is

template-declaration:
exportopt template < template-parameter-list > declaration

It is apparant that if we slightly extend the standard block-declaration pro-
duction rule with an alias-declaration rule as follows

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
alias-declaration

alias-declaration:
using identifier = type-id

then the parameterized type alias syntax neatly fits the general syntax. It
thus remains to elaborate on the new rule.

An alias-declaration is a declaration, and not a definition. An alias-
declaration introduces a name into a declarative region as an alias for the
type designated by the right-hand-side of the declaration. The core of this

Template aliases WG21/N1489



7

proposal concerns itself with type name aliases, but the notation can obviously
be generalized to provide alternate spellings of namespace-aliasing or nam-
ing set of overloaded functions (see

�
2.3 for further discussion). It may be

noted that the grammar production alias-declaration is acceptable anywhere
a typedef declaration or a namespace-alias-definition is acceptable.

2.1 Alternate spelling for typedef

A typedef declaration can be viewed as a special case of a non-template
alias-declaration. For example, the declaration

typedef double (*analysis_fp)(const vector<Student_info>&);

could be rewritten in the new alias-declaration syntax as

using analysis_fp = double (*)(const vector<Student_info>&);

The new syntax can be considered an improvement over the existing non-
linear syntax, in that it visually separates the declared name from the spelling
of the type an alias is being declared for.

Because a non-template alias-declaration that aliases a type-id is seman-
tically equivalent to a typedef declaration, we suggest that all rules appli-
cable to typedef-names be applicable to alias-names when the alias denotes a
type.

Since allowing this new syntax does not introduce a new possibilities
for aliasing it cannot lead to problems with naming that programmers don’t
currently face. We propose to allow the new syntax for generality.

2.2 Alternate spelling for namespace-aliasing

The alias-declaration syntax may also be generalized to cover the names-
pace alias definition syntax:

using WCL = WorldCompanyLibrary::ThirdRevision;

would be another of way saying

namespace WCL = WorldCompanyLibrary::ThirdRevision;

The grammar rule for alias-declaration would just need to be extended as
indicated below

alias-declaration:
using identifier = type-id
using identifier = qualified-namespace-specifier

Template aliases WG21/N1489



8

The issue of whether to allow extending a namespace through its alias
or not should be considered seperately from this proposal; however, it
worths pointing out because the alias is syntactically equivalent to the aliased
namespace, the general new name aliasing syntax nicely fits that eventual
language extension.

The alias-declaration syntax appears to be more general and more uni-
form. It also contains the traditional using-declaration as a special case.

2.3 Interaction with using-declaration

It is possible to generalize the notion of alias beyond types and namespaces
to functions, variables, etc. We do not see sufficient benefits from doing this
and can imagine serious overuse leading to confusion about which func-
tions and variables are used. Consequently, we do not propose the gener-
alizations mentioned in this section. Furthermore, we do not plan to work
further on these generalizations unless someone comes up with examples
that indicate significant usefulness.

In current C++, a using-declaration brings into scope a name declared
elsewhere (in a any named scope). Within the framework of the proposed
name aliasing syntax, the construct

using std::ostream;

would just be a short-hand for

using ostream = std::ostream;

where the new-to-be introduced identifier ostream is the same as the un-
qualified part of the name (std::ostream) we’re creating an alias for. In
that respect, the alias-declaration generalizes the existing using-declaration.

Allowing just this would be non-problematic and provide no new func-
tionality. We must consider the case where we introduce a new name for
an entity. For example:

using mystream = std::ostream;

This extends the alias-declaration scheme to non-type and non-namespace
names. For example:

int i;
using r = i;

This would provide a way to name sets of overloaded functions.

#include <cmath>
using Cos = std::cos; // whole overload set
using C = std::cos(double); // select double std::cos(double);

Template aliases WG21/N1489



REFERENCES 9

In the last alias-declaration, the specification of the parameter list (double)
unambiguously designates which function we are considering in the over-
load set denoted by std::cos. Therefore, there is no need for return type
specification. This just highlights the fact that an alias-declaration does not
introduce a name as an alias for a declaration; rather it introduces a name
as a alternate spelling for an entity, i.e. it aliases another name. Similarly, in

template<class T>
using F = f<T, MyAllocator<T> >(int, char);

the explicit template-argument list <T, MyAllocator<T> > helps to nar-
row down the overload set designated by f, and the parameter list (int,
char) then designates the desired function.

References

[1] Walter E. Brown, A Case for Template Aliasing, document no.
WG21/N1451=J16/03-0034.

[2] Gabriel Dos Reis and Mat Marcus, Proposal to add template aliases to
C++, document no. WG21/N1449=J16/03-0032.

[3] Herb Sutter, Typedef templates, document no. WG21/1406.

Template aliases WG21/N1489


