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Abstract. Programmers rely on programming idioms, design patterns,
and workaround techniques to make up for missing programming lan-
guage support. Evolving languages often address frequently encountered
problems by adding language and library support to subsequent releases.
By using new features, programmers can express their intent more di-
rectly. As new concerns, such as parallelism or security, arise, early id-
ioms and language facilities can become serious liabilities. Modern code
sometimes benefits from optimization techniques not feasible for code
that uses less expressive constructs. Manual source code migration is
expensive, time-consuming, and prone to errors.
In this paper, we present the notion of source code rejuvenation, the au-
tomated migration of legacy code and very briefly mention the tools we
use to achieve that. While refactoring improves structurally inadequate
source code, source code rejuvenation leverages enhanced program lan-
guage and library facilities by finding and replacing coding patterns that
can be expressed through higher-level software abstractions. Raising the
level of abstraction benefits software maintainability, security, and per-
formance.

1 Introduction

Popular programming languages evolve over time. One driver of evolution is a
desire to simplify the use of these languages in real life projects. For example,
in the early 1970ies the C programming language was developed as a system
programming language for the UNIX operating system on the PDP-11 [1]. With
the proliferation of UNIX to other platforms, C evolved to reflect concerns such
as portability and type safety. Later Stroustrup enhanced C with higher level
abstractions to simplify the development of a distributed and modularized UNIX
kernel [2]. Compared to C, ISO C++ [3] directly supports the program design
with classes, dynamic dispatch, templates, exception handling, and more [2].
Abstraction mechanisms present in C++ can be compiled to efficient machine
code on many architectures. This makes C++ suitable for software development
of embedded systems, desktop computers, and mainframe architectures. C++’s
proliferation and success is a constant source of ideas for enhancements and ex-
tensions. The ISO C++ standards committee has released a draft of the next
revision of the C++ standard, commonly referred to as C++0x [4] [5]. C++0x will



address a number of modeling problems (e.g., object initialization) by providing
better language and library support. Until compiler and library implementa-
tions of C++0x become widely available, C++ programmers solve these problems
through programming idioms and workaround techniques. These “solutions” are
typically more involved than they would be in C++0x and can easily become
another source of errors and maintenance problems.

This paper draws its examples from C++0x’s proposed extensions to the lan-
guage and its standardized libraries [6], but the topic is equally valid for other
widely used and evolving languages, such as Python [7], C# [8], and Java [9].
For example, Java is currently undergoing its sixth major revision since its first
release in 1995. Extensions under consideration for Java 7 include support for clo-
sures, null safe method invocations, extended catch clauses to catch and rethrow
groups of exceptions, type inference for generics and others [10].
The contributions of this paper are:

– We define the term source code rejuvenation and delineate it from related
fields.

– We demonstrate source code rejuvenation with examples that migrate code
from C++03 to C++0x.

The rest of this paper is outlined as follows: In §2, we define the term source
code rejuvenation. In §3, we demonstrate source code rejuvenation based on
C++0x language features. In §4, we put our work in context to refactoring. In §5,
we describe the tool we use to implement source code rejuvenation tools. In §6,
we summarize.

2 What is Source Code Rejuvenation?

Source code rejuvenation is a source-to-source transformation that replaces dep-
recated language features and idioms with modern code. Old code typically
contains outdated idioms, elaborate and often complex coding patterns, dep-
recated language features (or data structures). The rejuvenated code is more
concise, safer, and uses higher level abstractions. What we call outdated idioms
(and patterns) are techniques often developed in response to the lack of direct
language support. When programming languages and techniques evolve, these
coding styles become legacy code, as programmers will express new code in terms
of new language features. This leads to a mix of coding styles, which compli-
cates a programmer’s understanding of source code and can cause maintenance
problems. Furthermore, the teaching and learning can be greatly simplified by
eliminating outdated language features and idioms.

Source code rejuvenation is a unidirectional process that detects coding tech-
niques expressed in terms of lower-level language and converts them into code
using higher-level abstractions. High-level abstractions make information explicit
to programmers and compilers that would otherwise remain buried in more in-
volved code. We aim to automate many forms of code rejuvenation and to pro-
vide program assistance for cases where human intervention is necessary. In other
words, our aim is nothing less than to reverse (some forms of) (software) entropy!



Preserving behavioral equivalence between code transformations is necessary
to claim correctness. In the context of source code rejuvenation, a strict interpre-
tation of behavior preservation would disallow meaningful transformations (e.g.,
see the initializer list example §3.1). We therefore argue that a valid source code
rejuvenation preserves or improves a program’s behavior. In addition, when a
rejuvenation tool detects a potential problem but does not have sufficient infor-
mation to gurantee a correct code transformation, it can point the programmer
to potential trouble spots and suggest rejuvenation. For example, a tool can pro-
pose the use of the C++0x’s array class instead of C style arrays. A C++0x array
object passed as function argument does not decay to a pointer. The argument
retains its size information, which allows a rejuvenation tool to suggest bounds
checking of data accesses in functions that take arrays as parameters.

2.1 Applications

Source code rejuvenation is an enabling technology and tool support for source
code rejuvenation leverages the new languages capabilities in several aspects:

Source Code Migration: Upgrading to the next iteration of a language can
invalidate existing code. For example, a language can choose to improve static
type safety by tightening the type checking rules. As result formerly valid code
produces pesty error or warning messages. An example is Java’s introduction of
generics. Starting with Java 5 the compiler warns about the unparametrized use
of Java’s container classes.

Even with source code remaining valid, automated source code migration
makes the transition to new language versions smoother. For example, program-
mers would not need to understand and maintain source files that use various
workaround techniques instead of (later added) language constructs. For ex-
ample, a project might use template based libraries (e.g., Standard Template
Library (STL) [11], STAPL [12]) where some were developed for C++03 and
others for C++0x. In such a situation, programmers are required to understand
both.

Education: Integration with a smart IDE enables “live” suggestions that can
replace workarounds/idioms with new language constructs, thereby educating
programmers on how to better use available language and library constructs.

Optimization: The detection of workarounds and idioms can contribute a
significant factor to both the development cost of a compiler and the runtime,
as the detection and transformation requires time. Compiler vendors are often
reluctant to add optimizations for every single scenario. The introduction of new
language constructs can enable more and better optimizations (e.g., const expr

lets the compiler evaluate expressions at compile time [5]). Automated source
code migration that performs a one-time source code transformation to utilize
the new language support enables optimizations that might be forgone otherwise.



3 Case Studies

In this section, we demonstrate source code rejuvenation with examples taken
from C++0x, namely initializer lists and concept extraction.

3.1 Initializer lists

In current C++, the initialization of a container (or any other object) with an
arbitrary number of different values is cumbersome. When needed, programmers
deal with the problem by employing different initialization idioms.

Consider initializing a vector of int with three constant elements (e.g., 1, 2, 3).
Techniques to achieve this include writing three consecutive push back operations,
and copying constants from an array of int. We can “initialize” through a series
of push back()s:

// using namespace std;
vector<int> vec;

// three consecutive push backs
vec.push back(1);
vec.push back(2);
vec.push back(3);

Alternatively, we can initialize an array and use that to initialize the vector:

// copying from an array
int a[] = {1, 2, 3};
vector<int> vec(a,a+sizeof(a)/sizeof(int));

These are just the two simplest examples of such workarounds observed in
real code. Although the described initialization techniques look trivial, it is easy
to accidentally write erroneous or non-optimal code. For example, in the first
example the vector resizes its internal data structure whenever the allocated
memory capacity is insufficient to store a new value; in some situations that
may be a performance problem. The second example is simply a technique that
people often get wrong (e.g. by using the wrong array type or by specifying the
wrong size for the vector). Other workarounds tend to be longer, more compli-
cated, and more-error prone. Rejuvenating the code to use C++0x’s initializer
list construction [13] automatically remedies this problem.

// rejuvenated source code in C++0x
vector<int> vec = {1, 2, 3};

In C++0x, the list of values (1, 2, 3) becomes an initializer list. Initializer list
constructors take the list of values as argument and construct the initial object
state. As a result, the rejuvenated source code is more concise – needs only
one line of code (LOC) when compared to two and four LOC needed by the
workaround techniques. The rejuvenated source code becomes more uniform:
every workaround is replaced by the same construct. In this particular case, we
gain the additional effect that the rejuvenated code code style is analogous to C



style array initialization (compare the definition of the array a in the code snippet
with the workaround examples). Thus, the reader does not have to wonder about
the irregularities of C++98 initialization.

3.2 Partial order of templated functions in a generic function family

Current C++ supports generic programming with its template mechanism. Tem-
plates are a compile time mechanism that parametrize functions or classes over
types. With current C++, the requirements that make the instantiation of tem-
plate bodies succeed cannot be explicitly stated. To type check a template, the
compiler needs to instantiate the template body with concrete types. Program-
mers have to look up the requirements in documentation or infer them from the
template body. Attempts to instantiate templates with types that do not meet
all requirements fail with often hard to comprehend error messages [14]. Con-
cepts [14] [15] is a mechanism designed for C++0x to make these requirements
explicit in source code. A concept constrains one or more template arguments
and provides for the separation of template type checking from template instan-
tiation.

Concept extraction: In [16], we discuss tool support for extracting syntactic
concept requirements from templated source code. For example, consider the
STL [11] function advance that is defined over input-iterator:

template <class Iter, class Dist>
void advance(Iter& iterator, Dist dist) {

while (dist−−) ++iterator;
}

Our tool extracts the following concept requirements:

concept AdvInputIter <typename Iter, typename Dist> {
Dist::Dist(const Dist&); // to copy construct arguments
void operator++(Iter&); // advance the iterator by one
bool operator−−(Dist&, int); // decrement the distance
}

Likewise, our tool extracts the following requirements from the advance imple-
mentations for bidirectional-iterators:

// for Bidirectional−Iterators
template <class Iter, class Dist>
void advance(Iter& iterator, Dist dist) {

if (dist > 0)
while (dist−−) ++iterator;

else
while (dist++) −−iterator;

}

concept AdvBidirectIter <typename Iter, typename Dist> {
Dist::Dist(const Dist&);
void operator++(Iter&); // move the iterator forward
void operator−−(Iter&); // move the iterator backward



bool operator++(Dist&, int); // post−increment
bool operator−−(Dist&, int); // post−decrement
}

and random access-iterators:

// for RandomAccess−Iterators
template<class RandomAccessIterator, class Distance>
void advance(RandomAccessIterator& i, Distance n) {

i += n;
}

concept AdvRandomAccessIter <typename Iter, typename Dist> {
Dist::Dist(const Dist&);
void operator+=(Iter&, Dist&); // constant time positioning operation
}

Callers of a generic function, such as the advance family, are required to incorpo-
rate the minimal concept requirements in its concept specification. Consider a
function random elem, that moves the iterator to a random position and returns
the underlying value:

template <class Iter>
typename Iter::value type random elem(Iter iter, size t maxdist) {

advance(iter, rand(maxdist));
return ∗iter;
}

The concept requirements on Iter depend on the minimal concept require-
ments of the generic function advance. From the concept requirements that were
extracted for the advance family, the hierarchical concept relationship (or a
base implementation) cannot be inferred. The sets of requirements extracted
for input- and bidirectional-iterator can be ordered by inclusion. However, the
set of requirements for randomaccess-iterator is disjoint from the other two sets.
The minimal set of requirements cannot be automatically determined.

The lack of explicit information on the hierarchical order of templated func-
tion declarations is not only a problem for a concept extraction tool, but also for
programmers. Without more information compilers cannot discern overloaded
template functions for a given set of argument types. To overcome this problem,
programmers have invented idioms, such as tag dispatching [17] and techniques
that utilize the substitution failure is not an error mechanism [18]. This sec-
tion of the paper demonstrates that a rejuvenation tool can recover the concept
hierarchy by identifying the tag dispatching idiom in legacy code.

Tag dispatching: The tag dispatching idiom adds an unnamed non template
parameter to the signature of each function-template in a generic function family
(e.g., inputiterator tag, bidirectional iterator tag, . . .).

template<class InputIterator, class Distance>
void advance(InputIterator& iter, Distance dist, inputiterator tag);

template<class RandomAccessIterator, class Distance>
void advance(RandomAccessIterator& iter, Distance dist, randomaccess iterator tag);



With the extra argument, the compiler can discriminate the tagged functions
based on the non template argument dependent parameter type. A templated
access function uses the class family iterator traits [19] to construct an object of
the proper tag type. An iterator tag is an associated type (i.e., iterator category)
of the actual iterator (or its iterator traits).

template<class InputIterator, class Distance>
void advance(InputIterator& iter, Distance dist) {

advance(i, dist, iterator traits<InputIterator>::iterator category());
}

Recovering structural information from tags: To distinguish tags from regular
classes, we require parameters used as tags to possess the following properties.

– all template functions of a generic function family have unnamed parame-
ter(s) at the same argument positions(s).

– the type tuple of tag parameters is unique for each function template within
a generic function family.

In addition, we require that for each generic function family exist an access
function that has the same number of non-tag arguments (and types). Tag classes
are not allowed to have non-static members.

By identifying tag classes, our tool can deduce the refinement relationship of
template functions from the inheritance relationship of the tag classes. Consider,
the hierarchy of the iterator classes:

struct input iterator tag {};
struct forward iterator tag : input iterator tag {};
struct bidirectional iterator tag : forward iterator tag {};
struct randomaccess tag : bidirectional iterator tag {};

By knowing that input iterator is the base of the tag hierarchy, we can propa-
gate the requirements of the corresponding template function advance to the re-
quirements of its callers. For example, the requirements of function random elem

are:

concept RandomElem <typename Iter, typename Dist> {
// requirements propagated from advance
Dist::Dist(const Dist&); // to copy construct arguments
void operator++(Iter&); // advance the iterator by one
bool operator−−(Dist&, int); // decrement the distance

// additional requirements from random elem
Iter::Iter(const Iter&); // to copy construct arguments
}

4 Refactoring

The term refactoring is derived from the mathematical term “factoring” and
refers to finding multiple occurrences of similar code and factoring it into a single



reusable function, thereby simplifying code comprehension and future mainte-
nance tasks [20]. The meaning of refactoring has evolved and broadened. In [21],
Opdyke and Johnson define refactoring as an automatic and behavior preserv-
ing code transformation that improves source code that was subject to gradual
structural deterioration over its life time. Essentially, refactorings improve the
design of existing code [22] [23].

Traditionally, refactoring techniques have been applied in the context of
object-oriented software development. Automated refactoring simplifies modi-
fications of a class, a class hierarchy, or several interacting classes [21]. More
recently, refactoring techniques have been developed to support programs writ-
ten in other programming styles (i.e., functional programming [24]).

Refactorings capture maintenance tasks that occur repeatedly. Opdyke [25]
studied recurring design changes (e.g., component extraction, class (interface)
unification). Refactoring is a computer assisted process that guarantees cor-
rectness, thereby enabling programmers to maintain and develop software more
efficiently. In particular, evolutionary (or agile) software development methodolo-
gies [26], where rewriting and restructuring source code frequently is an inherent
part of the development process of feature extensions, benefit from refactoring
tools.

“Anti-patterns” [27] and “code smells” [22] are indicators of design deficien-
cies. Anti-patterns are initially structured solutions that turn out to be more
troublesome than anticipated. Examples for anti-patterns include the use of
exception-handling for normal control-flow transfer, ignoring exceptions and er-
rors, magic strings, and classes that require their client-interaction occur in a
particular sequence. Source code that is considered structurally inadequate is
said to suffer from code smell. Examples for “code smell” include repeated sim-
ilar code, long and confusing functions (or methods), overuse of type tests and
type casts. The detection of code smell can be partially automated [28] and
assists programmers in finding potentially troublesome source locations. Refac-
toring of anti-patterns and “code smells” to more structured solutions improves
safety and maintainability.

Refactoring does not emphasize a particular goal or direction of source code
modification - e.g., refactoring supports class generalization and class specifica-
tion [25], refactoring can reorganize source code towards patterns and away from
patterns (in case a pattern is unsuitable) [23].

Refactoring strictly preserves the observable behavior of the program. The
term “observable behavior”, however, is not well defined [20]. What observable
behavior exactly requires (e.g., function call trace, performance, . . .) remains
unclear. Refactoring does not eliminate bugs, but can make bugs easier to spot
and fix.

4.1 Source Code Rejuvenation and Refactoring

Table 1 summarizes characteristics of source code rejuvenation and refactoring.
Both are examples of source code analysis and transformations that operate on



the source level of applications. Refactoring is concerned to support software de-
velopment with tools that simplify routine tasks, while source code rejuvenation
is concerned with a one-time software migration. Both are examples of source
code analysis and transformation. Source code rejuvenation gathers information
that might be dispersed in the source of involved workaround techniques and
makes the information explicit to compilers and programmers. Refactoring em-
phasizes the preservation of behavior, while source code rejuvenation allows for
and encourages behavior improving modifications.

Source Code Rejuvenation Refactoring

Transformation Source-to-source Source-to-source

Behavior preserving Behavior improving Behavior preserving

Directed yes no
Raises the level of abstraction

Drivers Language / library evolution Feature extensions
Design changes

Indicators Workaround techniques / idioms Code smells
Anti-patterns

Applications One-time source code migration Recurring maintenance tasks

Table 1. Source Code Rejuvenation vs. Refactoring

We might consider code rejuvenation a “subspecies” of refactoring (or vise
versa), but that would miss an important point. The driving motivation or code
rejuvenation is language and library evolution rather than the gradual improve-
ment of design within a program. Once a rejuvenation tool has been configured,
it can be applied to a wide range of programs with no other similarities than
they were written in an earlier language dialect or style.

5 Tool Support for Source Code Rejuvenation

For our implementation of a source code rejuvenation tools, we utilize the Pivot
source-to-source transformation framework [29]. The Pivot’s internal program
representation (IPR) allows for representing a superset of C++ including some
programs written in the next generation of C++. IPR can be conceived as a
fully typed abstract syntax tree. IPR represents C++ programs at a level that
preserves most information present in the the source code. For example, IPR
preserves uninstantiated template code. This allows us to analyse template and
improve template definitions, for example, by deducing concepts or rejuvenating
template function bodies.

We stress that the IPR is fully typed. Type information enables the imple-
mentation of source code rejuvenation that is type sensitive. Most of the potential
rejuvenation analysis and transformations depend on type information. For ex-
ample, concept extraction distinguishes operations that are template argument



dependent from operations that are not. Likewise, the implementation to mi-
grate source code to use initializer lists depends on whether the container type
supports initializer-list constructors. This is the case for standard STL contain-
ers.

Related work includes systems for source code evolution and transforma-
tions. MoDisco [30], which is part of Eclipse, provides a model driven framework
for source code modernization. The Design Maintenance System (DMS) [31] is
an industrial project that provides a transformation framework. DMS supports
the evolution of large scale software written in multiple languages. Stratego/XT
[32] is a generic transformation framework that operates on an annotated term
(ATerm) representation. Rose [33] provides a source-to-source translation frame-
work for C++ and Fortran programs.

6 Conclusion

In this paper, we have discussed source code rejuvenation, a process that au-
tomates and assists source code changes to take advantage of improvements to
programming languages and its libraries. We have supported our arguments with
two specific examples from the migration from C++03 to C++0x.

We are aware that refactoring has been used to describe semantic preserving
code transformations that migrate code to use new frameworks (e.g., Tip et al.
[34], Tansey and Tilevich [35]). In this paper, we have demonstrated with exam-
ples that the difference between language evolution related code transformations
and refactoring is subtle but important. We prefer and suggest the term “source
code rejuvenation” for describing one-time and directed source code transforma-
tions that discover and eliminate outdated workaround techniques and idioms.
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