
Reliable and Efficient Concurrent Synchronization for
Embedded Real-Time Software

Damian Dechev
dechev@tamu.edu

Texas A&M University
College Station, TX 77843-3112

Bjarne Stroustrup
bs@cs.tamu.edu

Texas A&M University
College Station, TX 77843-3112

Abstract

The high degree of autonomy and increased complex-
ity of future robotic spacecraft pose significant challenges
in assuring their reliability and efficiency. To achieve fast
and safe concurrent interactions in mission critical code,
we survey the practical state-of-the-art nonblocking pro-
gramming techniques. We study in detail two nonblock-
ing approaches: (1) CAS-based algorithms and (2) Soft-
ware Transactional Memory. We evaluate the strengths and
weaknesses of each approach by applying each methodol-
ogy for engineering the design and implementation of a
nonblocking shared vector. Our study investigates how the
application of nonblocking synchronization can help elimi-
nate the problems of deadlock, livelock, and priority inver-
sion and at the same time deliver a performance improve-
ment in embedded real-time software.

1 Objectives

1 Future space exploration projects, such as Mars Sci-
ence Laboratory (MSL) [23], demand the engineering of
some of the most complex embedded software systems. The
notion of concurrency is of critical importance for the de-
sign and implementation of such systems. The process-
oriented software development and certification protocols
(such as [20]) often do not reach the level of detail of pro-
viding guidelines for the engineering of reliable concurrent
software. In this work, we present a detailed survey of the
state-of-the-art nonblocking programming techniques that
can help in implementing efficient and safe concurrent in-
teractions in mission critical embedded code.

1This is the authors’ version of the work. It is posted here by permission
of the publisher. Not for redistribution. The definitive version is published
in Proceedings of 3rd IEEE International Conference on Space Mission
Challenges for Information Technology (IEEE SMC-IT 2009), Pasadena,
California, July 2009.

1.1 Parallelism and Complexity

The most common technique for controlling the interac-
tions of concurrent processes is the use of mutual exclusion
locks. A mutual exclusion lock guarantees thread-safety of
a concurrent object by blocking all contending threads try-
ing to access it except the one holding the lock. In scenarios
of high contention on the shared data, such an approach can
seriously affect the performance of the system and signifi-
cantly diminish its parallelism. For the majority of applica-
tions, the problem with locks is one of difficulty of provid-
ing correctness more than one of performance. The appli-
cation of mutually exclusive locks poses significant safety
hazards and incurs high complexity in the testing and vali-
dation of mission-critical software. Locks can be optimized
in some scenarios by utilizing fine-grained locks or context-
switching. Often due to the resource limitations of flight-
qualified hardware, optimized lock mechanisms are not a
desirable alternative [18]. Even for efficient locks, the in-
terdependence of processes implied by the use of mutual
exclusion introduces the dangers of deadlock, livelock, and
priority inversion. The incorrect application of locks is hard
to determine with the traditional testing procedures and a
program can be deployed and used for a long period of
time before the flaws become evident and eventually cause
anomalous behavior.

1.2 Nonblocking Synchronization

To achieve higher safety and gain performance, we sug-
gest the application of nonblocking synchronization. A con-
current object is nonblocking if it guarantees that some pro-
cess in the system will make progress in a finite amount
of steps [14]. An object that guarantees that each process
will make progress in a finite number of steps is defined as
wait-free. Obstruction-freedom [13] is an alternative non-
blocking condition that ensures progress if a thread even-
tually executes in isolation. It is the weakest nonblocking
property and obstruction-free objects require the support of

1



a contention manager to prevent livelocking. Nonblock-
ing designs most commonly are founded on a set of atomic
primitives supported by the hardware architecture.

The most ubiquitous and versatile data structure in the
ISO C++ Standard Template Library [22] is vector, offer-
ing a combination of dynamic memory management and
constant-time random access. Because of the vector’s wide
use and challenging parallel implementation of its non-
blocking dynamic operations, we illustrate the efficiency of
each nonblocking approach discussed in this work with re-
spect to its applicability for the design and implementation
of a shared nonblocking vector. A number of pivotal con-
current applications in the Mission Data System [15] frame-
work employ a shared STL vector (in all scenarios protected
by mutually exclusive locks). Such is the Data Management
Service library described by Wagner in [24].

2 Engineering a Nonblocking Data Structure

Lock-free and wait-free algorithms exploit a set of
portable atomic primitives such as the word-size Compare-
and-Swap (CAS) instruction [9]. The design of nonblock-
ing data structures poses significant challenges and their de-
velopment and optimization is a current topic of research
[8], [14]. The Compare-And-Swap (CAS) atomic primi-
tive (commonly known as Compare and Exchange, CMPX-
CHG, on the Intel x86 and Itanium architectures [16]) is a
CPU instruction that allows a processor to atomically test
and modify a single-word memory location. CAS requires
three arguments: a memory location (Li), an old value (Ai),
and a new value (Bi). The instruction atomically exchanges
the value stored at Li with Bi, provided that Li’s current
value equals Ai. The result indicates whether the exchange
was performed. For the majority of implementations the
return value is the value last read from Li (that is Bi if
the exchange succeeded). Some CAS variants, often called
Compare-And-Set, have a return value of type boolean. The
hardware architecture ensures the atomicity of the operation
by applying a fine-grained hardware lock such as a cache or
a bus lock (as is the case for IA-32 [16]). The application
of a CAS-controlled speculative manipulation of a shared
location (Li) is a fundamental programming technique in
the engineering of nonblocking algorithms [14] (an exam-
ple is shown in Algorithm 1). In our pseudocode we use

Algorithm 1 CAS-controlled speculative manipulation of
Li

1: repeat
2: value type Ai = Liˆ
3: value type Bi = fComputeB
4: until CAS(Li, Ai, Bi) == Bi

the symbols ˆ, &, and . to indicate pointer dereferencing,

obtaining an object’s address, and integrated pointer deref-
erencing and field access. When the value stored at Li is
the control value of a CAS-based speculative manipulation,
we call Li and Liˆ control location and control value, re-
spectively. We indicate the control value’s type with the
string value type. The size of value type must be equal
or less than the maximum number of bits that a hardware
CAS instruction can exchange atomically (typically the size
of a single memory word). In the most common cases,
value type is either an integer or a pointer value. In the
latter case, the implementor might reserve two extra bits
per each control value and use them for implementation-
specific value marking [8]. This is possible if we assume
that the pointer values stored at Li are aligned and the two
low-order bits have been cleared. In Algorithm 1, the func-
tion fComputeB yields the new value Bi.

Linearizability [14] is an important correctness condi-
tion for concurrent objects: a concurrent operation is lin-
earizable if it appears to execute instantaneously in a given
point of time between the time τ1 of its invocation and the
time τ2 of its completion. The implementations of many
nonblocking data structures require the update of two or
more memory locations in a linearizable fashion [3], [8].
The engineering of such operations (e.g. push back and
resize in a shared dynamically resizable array) is critical
and particularly challenging in a CAS-based design. Har-
ris et al. propose in [10] a software implementation of a
multiple-compare-and-swap (MCAS) algorithm based on
CAS. This software-based MCAS algorithm has been ap-
plied by Fraser in the implementation of a number of lock-
free containers such as binary search trees and skip lists
[7]. The cost of theMCAS operation is expensive requiring
2M + 1 CAS instructions. Consequently, the direct appli-
cation of the MCAS scheme is not an optimal approach for
the design of lock-free algorithms. However, the MCAS
implementation employs a number of techniques (such as
pointer bit marking and the use of Descriptors) that are use-
ful for the design of practical lock-free systems. A common
programming technique applied for the implementation of
the complex nonblocking operations is the use of a Descrip-
tor Object [3], [8]. A Descriptor is an object that allows an
interrupting thread help an interrupted thread complete suc-
cessfully.

A number of advanced Software Transactional Memory
(STM) libraries provide nonblocking transactions with dy-
namic linearizable operations [5], [21]. Such transactions
can be utilized for the design of nonblocking containers
[21]. As our performance evaluation demonstrates, the high
cost of the extra level of indirection and the conflict detec-
tion and validation schemes in STM systems does not allow
performance comparable to that of a hand-crafted lock-free
container that relies solely on the application of portable
atomic primitives. Sections 2.3 and 2.5 describe in detail

2



the implementation of a nonblocking shared vector using
CAS-based techniques and STM, respectively. Section 3
provides analysis of the suggested implementation strate-
gies and discusses the performance evaluation of the two
approaches.

2.1 Design Goals

In this section we synthesize the most desirable charac-
teristics of a nonblocking shared vector.
a. thread-safety: the data should be accessible to multiple
processors at all times
b. lock-freedom: guarantee (at least) lock-free progress of the
container’s operations
c. portability: do not rely on uncommon architecture-specific
instructions
d. easy-to-use interfaces: offer the interfaces, functionality, and
guarantees available in the sequential STL vector
e. high level of parallelism: concurrent completion of non-
conflicting operations should be possible
f. minimal overhead: achieve lock-freedom without excessive
copying, levels of indirection, and costly conflict detection and
validation schemes, minimize the time spent on redundant and
speculative computations and the number of calls to costly atomic
primitives

2.2 Implementation Concerns

We provide a brief summary of the most important im-
plementation concerns for the practical and portable design
of a nonblocking dynamic array. The following sections
discuss the implementation issues related to guaranteeing
portability, meeting the requirements for linearizability, pre-
venting race conditions, coping with the ABA problem, and
incorporating nonblocking memory management and allo-
cation schemes.

2.2.1 Portability

Virtually at the core of every known synchronization tech-
nique is the application of a number of hardware atomic
primitives. The semantics of such primitives vary depend-
ing on the specific hardware platform. There are a number
of architectures that support some hardware atomic instruc-
tions that can provide greater flexibility such as the Load-
Link/Store Conditional (LL/SC) supported by the PowerPC,
Alpha, MIPS, and the ARM architectures or instructions
that perform atomic writes to more than a single word in
memory, such as the double-compare-and-swap instruction
(DCAS) [4]. The hardware support for such atomic instruc-
tions can vastly simplify the design of a nonblocking al-
gorithm as well as offer immediate solutions to a number

of challenging problems such as the ABA problem [19].
However, to maintain portability across a large number of
hardware platforms, the design and implementation of a
nonblocking algorithm cannot rely on the support of such
atomic primitives. The most common atomic primitive that
is supported by a large majority of hardware platforms is
the single-word CAS instruction.

2.2.2 Linearizability Guarantee

In a CAS-based design, a major difficulty is meeting the
linearizability requirements for operations that require the
update of more than a single-word in the system’s shared
memory. To cope with this problem, it is possible to apply
a combination of a number of known techniques:

a. Extra Level of Indirection: Reference semantics [22] must be
assumed in case the data being manipulated is larger than a
memory word size or the approach relies on the application of
smart pointers or garbage collection for each individual ele-
ment in the shared container

b. Barnes-style announcement [3]: Often referred to as a De-
scriptor Object, a Barnes-style announcement stores a descrip-
tion of a pending operation on a given memory location. It
allows the interrupting threads help the interrupted thread com-
plete an operation rather than wait for its completion

c. Descriptive Log: At the core of virtually all Software Transac-
tional Memory implementations, the Descriptive Log stores a
description of all pending reads and writes to the shared data.
It is used for conflict detection, validation, and optimistic spec-
ulation

d. Transactional Memory: A duplicate memory copy used to per-
form speculative updates that are invisible to all other threads
until the linearization point of the entire transaction

e. Optimisitic Speculation: Complex nonblocking operations of-
ten employ optimistic speculative execution in order to carry
out the memory updates on a local or duplicate memory copy
and commit once there are no conflicts with interfering opera-
tions. It is necessary to employ a methodology for unrolling all
changes performed by the speculating operation, should there
be conflicts during the commit phase

To illustrate the complexity of a nonblocking design of a
shared vector, Table 1 provides an analysis of the number
of memory locations that need to be updated upon the exe-
cution of some of its basic operations.

2.2.3 Interfaces of the Concurrent Operations

According to the ISO C++ Standard [17], the STL contain-
ers’ interfaces are inherently sequential. The next ISO C++
Standard [1] is going to include a concurrent memory model
[2] and possibly a blocking threading library. In Table 2 we

3



Operations Memory Locations

push back V ector × Elem→ void 2: element, size

pop back V ector → Elem 1: size

reserve V ector × size t→ V ector n: all elements

read V ector × size t→ Elem none

write V ector × size t× Elem→ V ector 1: element

size V ector → size t none

Table 1. Vector - Operations

Operation Description
size type size() const Number of elements in the vector
size type capacity() const Number of available memory slots
void reserve(size type n) Allocation of memory with capacity n
bool empty() const true when size = 0
T* operator[] (size type n) const returns the element at position n
T* front() returns the first element
T* back() returns the last element
void push back(constT&) inserts a new element at the tail
void pop back() removes the element at the tail
void resize(n, t = T ()) modifies the tail, making size = n

Table 2. Interfaces of STL Vector

show a brief overview of some of the basic operations of
an STL vector. Consider the sequence of operations applied
to an instance, vec, of the STL vector: vec[vec.size()-1];
vec.pop back();. In an environment with concurrent opera-
tions, we cannot have the guarantee that the element being
deleted by the pop back is going to be the element that had
been read earlier by the invocation of operator[]. Such a
sequential history is just one of the several legal sequen-
tial histories that can be derived from the concurrent execu-
tion of the above operations. While the STL interfaces have
proven to be efficient and flexible for a large number of ap-
plications [22], to preserve the semantic behavior implied
by the sequential definition of the STL semantics, one can
either rely on a library with atomic transactions [5], [21]
or alternatively define concurrent STL interfaces adequate
with respect to the applied consistency model. In the exam-
ple we have shown, it might be appropriate to modify the
interface of the pop back operation and return the element
being deleted instead of the void return type specified in
STL. Such an implementation efficiently combines two op-
erations: reading the element to be removed from the con-
tainer and removing the element. Should we prefer to keep
the STL standard interface of void pop back(), the task of
obtaining the value of the removed element in a concurrent
nonblocking execution might be quite costly and difficult to
implement. Based on the shared containers’ usage, observ-
ing the possibilities for such combinations can deliver bet-
ter usability and performance advantages in a nonblocking
implementation. Other possibly beneficial combinations of
operations are 1) CAS-based read-modify-write at location

Li that unifies a random access read and write at location
Li and 2) the push back of a block of tail elements.

2.3 Overview of the Lock-free Operations

In this section we present a brief overview of the most
critical lock-free algorithms employed by a CAS-based
shared vector (see [3] for the full set of the operations of
the first lock-free dynamically resizable array). To help
tail operations update the size and the tail of the vector
(in a linearizable manner), the design presented in [3] sug-
gests the application of of a helper object, named ”Write
Descriptor (WD)” that announces a pending tail modi-
fications and allows interrupting threads help the interrupted
thread complete its operations. A pointer to the WD ob-
ject is stored in the ”Descriptor” together with the con-
tainer’s size and a reference counter required by the applied
memory management scheme. The approach avoids stor-
age relocation and its synchronization hazards by utilizing
a two-level array. Whenever push back exceeds the cur-
rent capacity, a new memory block twice the size of the
previous one is added. The remaining part of this section
presents the pseudo-code of the tail operations (push back
and pop back) and the random access operations (read and
write at a given location within the vector’s bounds).

Algorithm 2 push back vector, elem
1: repeat
2: desccurrent ← vector.desc
3: CompleteWrite(vector, desccurrent.pending)
4: if vector.memory[bucket] = NULL then
5: AllocBucket(vector, bucket)
6: end if
7: wop←

new WriteDesc(At(desccurrent.size)ˆ, elem, desccurrent.size)
8: descnext ← new Descriptor(desccurrent.size + 1, wop)
9: until CAS(&vector.desc, desccurrent, descnext)

10: CompleteWrite(vector, descnext.pending)

Algorithm 3 Read vector, i
1: return At(vector, i)ˆ

Algorithm 4 Write vector, i, elem
1: At(vector, i)ˆ← elem

Algorithm 5 pop back vector
1: repeat
2: desccurrent ← vector.desc
3: CompleteWrite(vector, desccurrent.pending)
4: elem← At(vector, desccurrent.size− 1)ˆ
5: descnext ← new Descriptor(desccurrent.size− 1, NULL)
6: until CAS(&vector.desc, desccurrent, descnext)
7: return elem

4



Algorithm 6 CompleteWrite vector, wop
1: if wop.pending then
2: CAS(At(vector, wop.pos), wop.valueold, wop.valuenew)
3: wop.pending ← false
4: end if

Push back (add one element to end) The first step is to com-
plete a pending operation that the current descriptor might hold.
In case that the storage capacity has reached its limit, new mem-
ory is allocated for the next memory bucket. Then, push back
defines a new ”Descriptor” object and announces the current
write operation. Finally, push back uses CAS to swap the pre-
vious ”Descriptor” object with the new one. Should CAS fail,
the routine is re-executed. After succeeding, push back finishes
by writing the element.

Pop back (remove one element from end) Unlike
push back, pop back does not utilize a ”Write
Descriptor”. It completes any pending operation of the
current descriptor, reads the last element, defines a new descriptor,
and attempts a CAS on the descriptor object.

Non-bound checking Read and Write at position i The ran-
dom access read and write do not utilize the descriptor and
their success is independent of the descriptor’s value.

2.3.1 The ABA Problem

The ABA problem [19] is fundamental to all CAS-based
systems. The ABA problem can occur in the CAS-
based design of a nonblocking dynamic array in a num-
ber of possible ways. One possible hazardous execution
can happen like this: assume a thread T0 attempts to
perform a push back; in the vector’s ”Descriptor”,
push back stores an announcement declaring that the
value of the object at position i should be changed from
A to B. Then a thread T1 interrupts and reads the De-
scriptor Object. Later, after T0 resumes and successfully
completes the operation, a third thread T2 can modify the
value at position i from B back to A. When T1 resumes its
CAS is going to succeed and erroneously execute the up-
date from A to B. As a common technique for overcoming
the ABA problem it has been suggested to use a version tag
attached to each value. Such an approach demands the ap-
plication of an atomic instruction such as a CAS2 (compare-
and-swap two co-located words), a hardware primitive that
is available on some modern Intel architectures. For our
nonblocking implementation we cannot assume the avail-
ability of such atomic primitives since they are specific to a
limited number of hardware platforms. ABA avoidance on
CAS-based architectures has been typically limited to two
possible approaches:
a. split a 32-bit memory word into a value and a counter portions
(thus significantly limiting the usable address space or the range
of values that can be stored) [6]
b. apply value semantics (by utilizing an extra level of indirection,
i.e. create a unique pointer to each value to be stored) in combina-

tion with a memory management approach that disallows the reuse
of potentially hazardous memory locations [12], [19] (thus impose
a significant performance overhead)
To eliminate the ABA problem of (2), the authors in [3] sug-
gest the application of a memory management scheme such
as Herlihy et al.’s Pass The Buck algorithm [11] that utilizes
a separate thread to periodically reclaim unguarded objects.
The vector’s vulnerability to (1) (in the absence of CAS2 or
LL/SC), can be eliminated by requiring the data structure to
copy all elements and store pointers to them.

2.4 STM-based Nonblocking Design

A variety of recent STM approaches [5], [21] claim
safe and easy to use concurrent interfaces. The most ad-
vanced STM implementations allow the definition of ef-
ficient ”large-scale” transactions, i.e. dynamic and un-
bounded transactions. Dynamic transactions are able to ac-
cess memory locations that are not statically known. Un-
bounded transactions pose no limits on the number of lo-
cations being accessed. The basic techniques applied are
the utilization of public records of concurrent operations
and a number of conflict detection and validation algorithms
that prevent side-effects and race conditions. To guarantee
progress transactions help those ahead of them by examin-
ing the public log record. The availability of nonblocking,
unbounded, and dynamic transactions provides an alterna-
tive to CAS-based designs for the implementation of non-
blocking data structures. The complex designs of such ad-
vanced STMs often come with an associated cost:

a. Two Levels of Indirection: A large number of the nonblocking
designs require two levels of indirection in accessing data

b. Linearizability: The linearizability requirements are hard to
meet for an unbounded and dynamic STM. To achieve effi-
ciency and reduce the complexity, many STMs offer the less
demanding obstruction-free synchronization [13]

c. STM-oriented Programming Model: The use of STM requires
the developer to be aware of the STM implementation and ap-
ply an STM-oriented Programming Model. The effectiveness
of such programming models is a topic of current discussions
in the research community

d. Closed Memory Usage: Both nonblocking and lock-based
STMs often require a closed memory system

e. Vulnerability of Large Transactions: In a nonblocking imple-
mentation large transactions are a subject to interference from
contending threads and are more likely to encounter conflicts.
Large blocking transactions can be subject to time-outs, re-
quests to abort or introduce a bottleneck for the computation

f. Validation: A validation scheme is an algorithm that ensures
that none of the transactional code produces side-effects. Code
containing I/O and exceptions needs to be reworked as well as

5



some class methods might require special attention. Consider
a class hierarchy with a base class A and two derived classes
B and C. Assume B and C inherit a virtual method f and B’s
implementation is side-effect free while C’s is not. A validation
scheme needs to disallow a call to C’s method f

With respect to our design goals, the main problems associ-
ated with the application of STM are meeting the stricter re-
quirements posed by the lock-free progress and safety guar-
antees and the overhead introduced by the application of an
extra level of indirection and the costly conflict detection
and validation schemes.

2.5 RSTM-based Vector

The Rochester Software Transactional Memory (RSTM)
[21] is a word- and indirection-based C++ STM library
that offers obstruction-free nonblocking transactions. As
explained by the authors in [21], while helping provide
lightweight committing and aborting of transactions, the ex-
tra level of indirection can cause a dramatic performance
degradation due to the more frequent capacity and coher-
ence misses in the cache. In this section we employ the
RSTM library (version 4) to build an STM-based non-
blocking shared vector. In Algorithms 7, 8, 9, and 10,
we present the RSTM-based implementation of the read,
write, pop back, and push back operations, respectively.
According to the RSTM API [21], access to shared data is
achieved by utilizing four classes of shared pointers: 1) a
shared object (class sh ptr < T >) representing on object
that is untouched by a transaction, 2) a read only object
(class rd ptr < T >) referring to an object that has been
opened for reading, 3) a writable object (class wr ptr <

T >) pointing to a an object opened for writing by a trans-
action, and 4) a privatized object (class un ptr < T >) rep-
resenting an object that can be accessed by one thread at
a time. These smart pointer templates can be instantiated
only with data types derived from a core RSTM object class
stm :: Object. Thus, we need to wrap each element stored
in the shared vector in a class STMV ectorNode that de-
rives from stm :: Object. Similarly, we define a Descriptor
class STMV ectorDesc (derived from stm :: Object) that
stores the container-specific data such as the vector’s size
and capacity. The tail operations need to modify (within a
single transaction) the last element and the Descriptor ob-
ject (of type STMV ectorDesc) that is stored in a location
Ldesc. The vector’s memory array is named with the string
mem. In the pseudo-code in Algorithms 9 and 10 we omit
the details related to the management of mem (such as the
resizing of the shared vector should the requested size ex-
ceed the container’s capacity).

Algorithm 7 RSTM vector, operation read location p
1: BEGIN TRANSACTION
2: rd ptr<STMVectorNode> rp(mem[p])
3: result = rp->value
4: END TRANSACTION
5: return result

Algorithm 8 RSTM vector, operation write v at location p
1: BEGIN TRANSACTION
2: wr ptr<STMVectorNode> wp(mem[p])
3: wp− > val = v
4: sh ptr<STMVectorNode> nv =

new sh ptr<STMVectorNode>(wp)
5: mem[p] = nv
6: END TRANSACTION

Algorithm 9 RSTM vector, operation pop back
1: BEGIN TRANSACTION
2: rd ptr<STMVectorNode> rp(mem[Ldesc− > size− 1])
3: sh ptr<STMVectorDesc> desc =

new sh ptr<STMVectorDesc>
(new STMVectorDesc(Ldesc− > size− 1))

4: result = rp->value
5: Ldesc = desc
6: END TRANSACTION
7: return result

Algorithm 10 RSTM vector, operation push back v
1: BEGIN TRANSACTION
2: sh ptr<STMVectorNode> nv =

new sh ptr<STMVectorNode>(new STMVectorNode(v))
3: sh ptr<STMVectorDesc> desc =

new sh ptr<STMVectorDesc>
(new STMVectorDesc(Ldesc− > size + 1))

4: mem[size] = nv
5: Ldesc = desc
6: END TRANSACTION

3 Analysis and Results

To evaluate the performance of the discussed synchro-
nization techniques, in this section we analyze the per-
formance of three approaches for the implementation of a
shared vector:
(1) the RSTM-based nonblocking vector implementation as pre-
sented in Section 2.5
(2) an RSTM lock-based execution of the vector’s transactions.
RSTM provides an option of running the transactional code in a
lock-based mode using redo locks [21]. Though blocking and not
meeting our goals for safe and reliable synchronization, we in-
clude the lock-based RSTM vector execution to gain additional
insight about the relative performance gains or penalties that the
discussed nonblocking approaches offer when compared to the ex-
ecution of a lock-based, STM-based container
(3) the hand-crafted CAS-based algorithms design as presented in
Section 2.3
We ran performance tests on an Intel IA-32 SMP machine
with two 1.83GHz processor cores with 512 MB shared
memory and 2 MB L2 shared cache running the MAC
10.5.6 operating system. We designed our experiments
by generating a workload of the various operations. We

6



A: 10+/10-/40w/40r

0.1

1

10

100

1000

1 2 4 8 16 32

therads

ti
m

e
 (

s)

1 2 3

Figure 1. Performance Results A

B: 10+/10-/10w/70r

0.1

1

10

100

1000

10000

1 2 4 8 16 32

threads

ti
m

e
 (

s)

1 2 3

Figure 2. Performance Results B

varied the number of threads, starting from 1 and exponen-
tially increased their number to 32. Each thread executed
500,000 lock-free operations on the shared container. We
measured the execution time (in seconds) that all threads
needed to complete. Each iteration of every thread executed
an operation with a certain probability (push back (+),
pop back (-), random access write (w), random access
read (r)). We show the performance graph for a distri-
bution of +:10%, -:10%, w:40%, r:40% on Figure 1. Fig-
ure 2 demonstrates the performance results in a read-many-
write-rarely scenario, +:10%, -:10%, w:10%, r:70%. Fig-
ure 3 illustrates the test results with a distribution +:25%,
-:25%, w:12%, r:38%. The number of threads is plotted
along the x-axis, while the time needed to complete all op-
erations is shown along the y-axis. To increase the readabil-

C: 25+/25-/12w/38r

0.1

1

10

100

1000

10000

1 2 4 8 16 32

threads

ti
m

e
 (

s)

1 2 3

Figure 3. Performance Results C

ity of the performance graphs, the y-axis uses a logarithmic
scale with a base of 10. Our test results indicate that for the
large majority of scenarios the hand-crafted CAS-based ap-
proach outperforms by a significant factor the transactional
memory approaches. The approach from [3] offers simple
application and fast execution. The STM-based design of-
fers a flexible programming interface and easy to compre-
hend concurrent semantics. The main deterrent associated
with the application of STM is the overhead introduced by
the extra level of indirection and the application of costly
conflict detection and validation schemes. According to
our performance evaluation, the nonblocking RSTM vector
demonstrates poor scalability and its performance progres-
sively deteriorates with the increased volume of operations
and active threads in the system. In addition, RSTM trans-
actions offer obstruction-free semantics. To eliminate the
hazards of livelocking, the software designers need to inte-
grate a contention manager with the use of an STM-based
container. Because of the limitations present in the state
of the art STM libraries [21], [5], we suggest that a shared
vector design based on the utilization of nonblocking CAS-
based algorithms can better serve the demands for safe and
reliable concurrent synchronization in mission critical code.

4 Impact for Space Systems

Modern robotic space exploration missions, such as the
Mars Science Laboratory [23], are expected to embed a
large array of advanced components and functionalities and
perform a complex set of scientific experiments. The high
degree of autonomy and increased complexity of such sys-
tems pose significant challenges in assuring the reliability
and efficiency of their software. A survey on the chal-
lenges for the development of modern spacecraft software

7



by Lowry [18] reveals that in July 1997 The Mars Pathfinder
mission experienced a number of anomalous system resets
that caused an operational delay and loss of scientific data.
The follow-up analysis identified the presence of a priority
inversion problem caused by the low-priority meteorologi-
cal process blocking the the high-priority bus management
process. The software engineers found out that it would
have been impossible to detect the problem with the black
box testing applied at the time. A more appropriate pri-
ority inversion inheritance algorithm had been ignored due
to its frequency of execution, the real-time requirements
imposed, and its high cost incurred on the slower flight-
qualified computer hardware. The subtle interactions in
the concurrent applications of the modern aerospace au-
tonomous software are of critical importance to the sys-
tem’s safety and operation. The presence of a large number
of concurrent autonomous processes implies an increased
volume of interactions that are hard to predict and validate.
Allowing fast and reliable concurrent synchronization is of
critical importance to the design of autonomous spacecraft
software.

5 Conclusion

In this work we investigated how the application of non-
blocking synchronization can help eliminate the problems
of deadlock, livelock, and priority inversion in embedded
real-time mission critical software. We studied the chal-
lenging process of how to design and implement a non-
blocking data container by applying 1) CAS-based synchro-
nization and 2) Software Transactional Memory. We dis-
cussed the principles of nonblocking synchronization and
demonstrated the application of both approaches by show-
ing the implementation of a lock-free shared vector. Our
performance evaluation concluded that while difficult to
design, CAS-based algorithms offer fast and scalable per-
formance and in a large majority of scenarios outperform
the alternative STM-based nonblocking or lock-based ap-
proaches by a significant factor. This paper aimed at deliv-
ering better understanding of the advantages (over mutual
exclusion) as well as the usability and performance trade-
offs of the modern nonblocking programming techniques
that can be of critical importance for the engineering of re-
liable and efficient concurrent flight software.

References

[1] P. Becker. Working Draft, Standard for Programming Language C++, ISO
WG21 N2009, April 2006.

[2] H. Boehm and S. Adve. Foundations of the C++ Concurrency Memory Model.
In PLDI ’08: Proceedings of the ACM SIGPLAN 2008 conference on Program-
ming language design and implementation. ACM Press, 2008.

[3] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-Free Dynamically Resizable
Arrays. In A. A. Shvartsman, editor, OPODIS, volume 4305 of Lecture Notes
in Computer Science, pages 142–156. Springer, 2006.

[4] D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin, N. Shavit, and G. L. S. Jr.
Even better DCAS-based concurrent deques. In International Symposium on
Distributed Computing, pages 59–73, 2000.

[5] D. Dice and N. Shavit. Understanding tradeoffs in software transactional mem-
ory. In Proc. of the 2007 International Symposium on Code Generation and
Optimization (CGO), 2007.

[6] D. Dvorak and W. Reinholtz. Hard real-time: C++ versus RTSJ. In OOPSLA
’04: Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 268–274,
New York, NY, USA, 2004. ACM.

[7] K. Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, Uni-
versity of Cambridge, Computer Laboratory, Feb. 2004.

[8] K. Fraser and T. Harris. Concurrent programming without locks. ACM Trans.
Comput. Syst., 25(2):5, 2007.

[9] D. Gifford and A. Spector. Case study: IBM’s system/360-370 architecture.
Commun. ACM, 30(4):291–307, 1987.

[10] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-
swap operation. In Proceedings of the 16th International Symposium on Dis-
tributed Computing, 2002.

[11] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory man-
agement support for dynamic-sized data structures. ACM Trans. Comput. Syst.,
23(2):146–196, 2005.

[12] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem: A mech-
anism for supporting dynamic-sized, lock-free data structures. In DISC ’02:
Proceedings of the 16th International Conference on Distributed Computing,
pages 339–353, London, UK, 2002. Springer-Verlag.

[13] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization:
Double-ended queues as an example. In ICDCS ’03: Proceedings of the 23rd
International Conference on Distributed Computing Systems, page 522, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[14] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, March 2008.

[15] M. Ingham, R. Rasmussen, M. Bennett, and A. Moncada. Engineering Com-
plex Embedded Systems with State Analysis and the Mission Data System. In
In Proceedings of First AIAA Intelligent Systems Technical Conference 2004,
2004.

[16] Intel. Ia-32 intel architecture software developer’s manual, volume 3: System
programming guide, 2004.

[17] ISO/IEC 14882 International Standard. Programming languages C++. Amer-
ican National Standards Institute, September 1998.

[18] M. R. Lowry. Software Construction and Analysis Tools for Future Space Mis-
sions. In J.-P. Katoen and P. Stevens, editors, TACAS, volume 2280 of Lecture
Notes in Computer Science, pages 1–19. Springer, 2002.

[19] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free
Objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

[20] RTCA. Software Considerations in Airborne Systems and Equipment Certifi-
cation (DO-178B), 1992.

[21] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L.
Scott. Nonblocking transactions without indirection using alert-on-update,
http://www.cs.rochester.edu/research/synchronization/rstm/v4api.shtml. In
SPAA ’07: Proceedings of the nineteenth annual ACM symposium on Paral-
lel algorithms and architectures, pages 210–220, New York, NY, USA, 2007.
ACM.

[22] B. Stroustrup. The C++ Programming Language. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[23] R. Volpe and S. Peters. Rover Technology Development and Mission Infusion
for the 2009 Mars Science Laboratory Mission. In 7th International Symposium
on Artificial Intelligence, Robotics, and Automation in Space, May 2003.

[24] D. Wagner. Data Management in the Mission Data System. In Proceedings of
the IEEE System, Man, and Cybernetics Conference, 2005.

8


