
Rejuvenating C++ Programs through
Demacrofication

Aditya Kumar
Computer Science Engineering

Texas A&M University
College Station,Texas-77840

Email: hiraditya@neo.tamu.edu

Andrew Sutton
Computer Science Engineering

Texas A&M University
College Station,Texas-77840
Email: asutton@cse.tamu.edu

Bjarne Stroustrup
Computer Science Engineering

Texas A&M University
College Station,Texas-77840

Email: bs@cs.tamu.edu

Abstract—We describe how legacy C++ programs can be
rejuvenated using C++11 features such as generalized constant
expressions, perfect forwarding, and lambda expressions. In
general, this work develops a correspondence between different
kinds of macros and the C++ declarations to which they should
be transformed. We have created a set of demacrofication tools
to assist a developer in the rejuvenation of C++ programs. To
evaluate the work, we have applied the rejuvenation tools to
a number of C++ libraries to assess the extent to which these
libraries might be improved by demacrofication. Results indicate
that between 68 and 98% of potentially refactorable macros could
be transformed into C++11 declarations. Additional experiments
demonstrate why these numbers are not readily achieved using
fully automated rejuvenation tools. We also discuss some tech-
niques to further assist in automating rejuvenation process.

Index Terms—source code rejuvenation; macros; C++11; refac-
toring; demacrofication

I. INTRODUCTION
As software developers make the decision to migrate C++98

software to C++11 it becomes advantageous to embrace new
libraries, idioms, and language features offered by the new
language. Using C++11 programming styles can improve read-
ability (hence maintainability), reliability, and performance.
We refer to this kind of program modification as source
code rejuvenation [1]: a one-time modification to source code
that replaces deprecated language and library features and
programming idioms with modern code.

In this work, we are interested in replacing C preprocessor
macros with new features and idioms in the C++11 program-
ming language. The kinds of problems engendered by the
C preprocessor are many and well known [2], [3]. Because
the preprocessor operates on the token stream independently
from the host language’s syntax, its extensive use can result
in a number of unintended consequences. Bugs resulting from
these conflicts can lead to hard-to-debug semantic errors.

In the C-family of languages there has been an effort to
limit the use of unstructured preprocessor constructs. Java has
none, C# limits preprocessing to conditional configuration, D
replaces common preprocessor uses with different kinds of
declarations (e.g., version), and most modern C++ coding
standards ban most “clever” or ad hoc usage of the C prepro-
cessor [2], [4]–[6]. In C++11, the number of reasonable uses

of the C preprocessor has been reduced. The use of general-
ized constant expressions, type deduction, perfect forwarding,
lambda expressions, and alias templates eliminate the need for
many previous preprocessor-based idioms and solutions.

Older C++ programs can be rejuvenated by replacing error-
prone uses of the C preprocessor with type safe C++11
declarations. In this paper, we present methods and tools
to support the task of demacrofying C++ programs during
rejuvenation. This task is intended to be completed with the
help of a programmer; it is not a fully automated process.

In particular, we have developed a classification of macros
defined in terms of their properties of completeness and
dependence and how they correspond to C++11 expressions,
statements, and declarations. We have built a set of tools
(cpp2cxx that assists in macro refactoring (the transformation
from macro to declaration), and another tool assists in the
iterative application of those refactorings to a software build.

Note that without these new C++11 features, there would
be no cause to replace the previous use of macros. The
transformations we propose in this paper cannot be achieved
using C++98/03. The approach is intended to be applied as
developers migrate to the new programming language.

In order to evaluate our approach, we have applied it to
the demacrofication of 7 different C++ libraries with over
1.5 million lines of non-comment non- blank code. The
evaluation comprised three different studies. We first applied
the refactoring tool to each of the libraries in order to identify
the kinds of macros used and the extent to which automated
transformations could remove replaceable macros. We then
conducted a case study applying the process manually as we
fully migrated one of those libraries to C++11. Finally, we
selected two of the remaining 6 libraries and experimented
with fully automating the rejuvenation using our iterative,
automated refactoring tools.

II. RELATED WORK
Pirkelbauer et al. describe source code rejuvenation as

a “source-to-source transformation that replaces deprecated
language features and idioms with modern code” [1]. Unlike
refactorings, which are recurring maintenance tasks aimed to
improve software design, source code rejuvenation is a one-
time transformation caused by a major evolutionary change in978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

the host language or underlying platform. Our goal in this
work is to (partially) automate the rejuvenation of legacy
C++ programs by replacing some macros with new C++11
declarations.

Ernst et al. studied preprocessor usage in a number of C
programs [3]. Most relevant to our work, is their categorization
of macro bodies (the replacement text) into 28 different cate-
gories, several of which directly correlate to C (and C++11)
syntax trees. The results of their study suggest that 42% of
macros had replacement text which were constants, 33% were
expressions, 5.1% were statements, and 2.1% were types. If
one could directly associate each replacement text with a
C++11 declaration, then we could expect to deprecate roughly
80% of all macros used in those programs. Obviously, this
will not be the case since some macros may reference free
variables, contain recursive instantiations, be defined after their
first use, etc. Our classification is, in part, informed by the
work of Ernst et al. However, we do not use their classification
outright, ours is primarily based on the relationship between
a macro and its corresponding C++11 declaration.

Mennie and Clarke aim to replace a number of macros
with equivalent C++ declarations [7]. In his thesis, Mennie
describes how simple constants and constant expressions,
enumerated constants, and parameterless functions can be
migrated to C++ declarations [8]. The approach taken here
analyzes macro definitions and their uses within a program,
while ours focuses solely on macro definitions. We also benefit
from new C++11 language features such as perfect forwarding,
which make it possible to generate correct definitions of
correct inline functions.

Gravley and Lakhotia also describe a method for replacing
sequences of constants (including #define directives) with
enums [9]. The approach relies on heuristics as “visual cues”
to facilitate the grouping of constant expressions into enu-
merations. A similar application is used to transform sets
of static final fields into enumerations in Java but is based
on interprocedural type inference instead of heuristics [10].
These approaches focus on specific transformations of macros
into declarations, whereas we try to accommodate a range of
transformations. The techniques presented in these works also
come with an added degree of difficulty since the macros they
are transforming attempt to map multiple macro definitions
into a single enumeration. We describe a 1-to-1 mapping
between macro definitions and their corresponding C++11
declarations.

Most refactoring tools involving the C preprocessor involve
its use for source code configuration and portability [11]. For
example, Baxter and Mehlich describe automated methods for
removing dead preprocessor configurations [12]. Garrido and
Johnson study issues related to more general refactorings of C
macros and conditionals [13]. The thesis of Vidács addresses
similar refactorings at the model level [14] after abstracting
from the source code through reverse engineering [15]. These
works vary from ours in the domain to which they apply.
We do not directly address issues related to macros used to
conditionally compile source code since there is no way (in

any version of C++) to represent such variations directly in
the syntax of the language.

III. REJUVENATING C++ PROGRAMS
The process by which we refactor macros during rejuvena-

tion is not a single- pass operation. The general process of
demacrofication is shown in Figure 1. The reason for this is
that we have not found any particular set of criteria that would
allow us to apply a transformation to all macros in a C++98
program and produce a fully correct, fully functioning C++11
program. There does not seem to be a silver bullet. We have,
however, found criteria that allow some transformations to be
fully automated and others that require user intervention.

Original
Source code

Intermediate
source code

suggest Final
Source code

finalize

validate

Fig. 1: Demacrofication is a process involving multiple trans-
formations of the source code.

The process begins by suggesting a set of initial refac-
torings. These initial refactorings are based on a classifica-
tion of macros in the initial source text and their relation
to C++11 declarations (if any). This suggestions might be
applied automatically or incrementally by a developer (this
is a decision made by the developer). We note that not all
automatic refactorings will result in correct programs. The
conditions resulting in breakage are discussed throughout this
section. Eventually, through iterative analysis and fixing of any
broken transformations, the programmer can produce a final,
functioning version of the source code.

IV. CLASSIFYING MACROS
The classifications of macros described by Ernst et al. was

based on the structures the macros represent in terms of the
C language grammar, frequency of usage and the context of
usage [3]. Mennie et al. classified the macros based on the
styles of macro usage in the software that they used for their
case study [7]. As a result, many of the macros in those
different classifications have no direct correspondence with C
or C++ declarations. For example, there is no way to join two
tokens into a single identifier except to use the C Preprocessor.

Because our goal is to replace macros with C++ declara-
tions, we have a somewhat restricted view of these taxonomies.
In particular, we are only interested in the kinds of macros that
could eventually be replaced. To achieve this, we found the
following three parameters that could serve as the classification
criteria for the macros:
A. syntactic structure of the macro bodies,
B. the presence (or absence) of free variables in the replace-

ment text, and
C. the presence of macros within conditionally compiled

sections of text.
This classification is defined solely for the purpose of in-

forming our tools about the which macros can be automatically
transformed and which might require user intervention.

A. Objects and Functions
A C Preprocessor macro is essentially a named sequence

of tokens, called its replacement text. Macros come in two
flavors: object-like macros and function-like macros [16].
Their definitions have this form:

// object-like
#define PI 3.14

// function-like
#define SUM(A, B) ((A)+(B))

Here, PI is an object-like macro with the replacement text
3.14, and SUM is a function-like macro that will expand to
the expression ((A)+(B)). Whether a macro is object-like
or function-like will affect the transformation into a C++
declaration (if any transformations are viable).

B. Completeness
The syntax of a macro’s replacement text is helpful in deter-

mining whether it can be expressed as declaration in the C++
programming language. Based on this criteria, macros can be
classified into two categories. If it is not possible to represent
the replacement text of a macro as a C++ expression we call
that macro as partial. These types of macros are sometimes
used to make the code look more readable, concatenate or
stringify tokens etc. For example:

#define C_MODE_START extern "C" {
#define CONCAT(a,b) a##b

Conversely, if the replacement text of a macro can be
expressed as a C++ expression we call the macro as complete.
For example:

#define Z ((X)+(Y))
#define FUN_CALL do { f(); } while(0)
#define TYPE_CHAR (char*)

Note that in the case of macro like FUN_CALL which emu-
lates a compound statement, we have relaxed the requirement
for a terminating semicolon. This definition of a complete
macro involves an assumption that macro-dependencies are
not taken into account. Taking macro-dependencies into con-
sideration would make it impossible to make such a reasoning
because C Preprocessor allows token pasting etc. Therefore,
based on the definition, a complete macro could be a type-
expression, value-expression, declaration, or statement. If we
consider the way the Pivot [17] represents expressions, com-
plete macros correspond to complete AST fragments.

C. Dependency
In a macro, we consider an identifier to represent a “free

variable” when it is not declared as a parameter of that macro.
We say that a macro with any free variables is dependent
since the final valuation of that macro depends on the context
in which it is expanded. A macro that contains previously
defined macros or even C++ keywords is considered to be
dependent. We include keywords because preprocessing may
actually redefine keywords. Examples of dependent macros
include:

#define __GNUG__ (__GNUC__&&__cplusplus)
#define DIFF(A,B) (MAX((A),(B))-MIN((A),(B)))
#define TYPE_CHAR (char*)

In the future, we plan to make built-in type names not free
variables, meaning that TYPE_CHAR would be classified as
closed. This will eventually permit us to reason bout about
type expressions such as char*.

In contrast, a closed macro does not contain previously
(system/user) defined macros or C++ keywords or any other
identifier not in its scope. For example, the following macros
are considered to be closed.

#define ARCHITECTURE 32
#define CONCAT(a,b) a##b

The reason that CONCAT is closed is that a and b are local
to the scope of the macro: they are parameters.

D. Configuration
Many macros are used to control the conditional compila-

tion (and occasionally inclusion) of C++ files. Ernst et al claim
that 6.5% of all macros are used in conditional directives [3],
although the numbers reported by Sutton for C++ Libraries
appear to be much higher (although not specifically reported)
[11]. We say that any macro appearing in a conditional or
include directive is configurational. For example:

#ifdef BOOST_NO_NOEXCEPT
...
#endif

The macro BOOST_NOEXCEPT is categorized as configura-
tional. Configurational macros are never transformed. Replac-
ing a configurational macro with a C++ declaration would
make it invisible to the preprocessor, thus guaranteeing a
broken the build.

A macro that is not configurational is non-configurational.

E. Definition Order
The C Preprocessor does not follow the usual “declare-

before-use” program structure of C and C++. A macro can
be referenced any time before it is defined, and expansions
of undefined macros simply result in an empty sequence of
replacement tokens. Consider the following program. The CEL
macro converts a Fahrenheit value to Celsius value.

#define SLOPE (5.0 / 9.0)
#define CEL(T) SLOPE * (T - THRESH)
#define THRESH 32.0

The macro THRESH is referenced before it is defined. The
macro is only looked up when an expansion of CEL is
requested, so it will become a valid use. Contrast that with
a corresponding C++ program:

double SLOPE = 5.0 / 9.0;
double CEL(double T) {
return SLOPE * (T - THRESH); // Error!

}
double THRESH = 32.0;

Obviously, THRESH is not in scope when it is referenced
in the body of the CEL function. This is not a hypothetical

CEL

SLOPE THRESH

Fig. 2: The CEL macro depends on SLOPE and THRESH.

problem; we found instances of macro ordering problems
when conducting our experiments (e.g., wxWidgets-2.9.3 has
several occurrences of this exact problem).

Solving this refactoring problem turns out to be a straight-
forward application of dependency analysis. We can construct
a directed macro dependency graph in which each vertex
represents a defined macro, and an edge (u, v) represents the
use of v by the definition of u. The macro dependency graph
corresponding to the program above is shown in 2. A correct
ordering of definitions can be generated by topologically
sorting the graph.

However, one does not simply reorder definitions in a
program. Experience shows that programmers frequently reject
nonlocal transformations of their source code; they want to
compare the original source with the improved source on a
line-for-line basis. If macro dependencies span multiple files
or are lexically distant in the same file, then automated re-
orderings make such comparisons difficult to make or reason
about.

V. MAPPING MACROS TO C++
We classified the macros across three different categories

based upon the properties described above. Having done that,
we can now define a partial mapping from macros to C++11
declarations. This mapping is undefined for any macro that is
partial or configurational.

To construct the mapping of macros to C++11 declarations,
we consider the programming elements of C++ abstractly, in
terms of IPR [17]. IPR is a complete, efficient, and hierarchical
representation of the C++ language. In contrast to a typical
compiler’s AST, IPR represents only the internal elements of
the language, not its external syntax. In IPR, nearly every kind
program element is an expression; names, literals, types, and
statements are different kinds of expressions. A declaration
is a kind of statement, examples of which include classes,
functions, and variables.

The reason for using IPR as a reference model in this
context is that it provides a framework for classifying different
kinds of expressions that might be found in the replacement
text of macros. We do not actually use IPR as a physical
artifact in our implementation. Our classification of macros
with program elements is simply motivated by IPR’s design.

In the following sections, we describe how complete, non-
configurational macros are mapped to C++11 declarations.
The dependency of macros, whether or not they contain free
variables, plays a significant role in this mapping. In some
cases, dependent macros may not have a defined mapping to

a C++11 declaration.
The basis for this the mapping is derived from the function-

like or object-like nature of the macro and the classification of
its replacement text as an expression, statement, declaration,
or type. In this discussion we assume that complete statements
can be fully parsed, resulting in a hypothetical AST and
allowing us to reason about the kind of program fragments
represented by replacement text. Our implementation of this
assumption partially parses the expression, and makes the
judgments heuristically Essentially, it is a best-effort attempt
to characterize a sequence of tokens as a C++ expression.

In subsection, we present examples of macros that can be
transformed and give the general mapping for those macros.
We discuss issues related dependent macros and when map-
pings can be defined. We also present mappings that require
“perfect knowledge” from a compiler front-end and how that
information can be used to resolve some cases.

A. Expression Alias
An expression alias is a macro whose replacement text can

be recognized as a C++ expression (but not a statement or a
type). The macro may be dependent or not.

If the expression parsed from the replacement text has literal
type, then the macro can be replaced with a constant expression
declaration. By By literal type we mean that the type of the
expression is the same as that of a literal values (e.g., 3 is an
int literal, 3.14 is a double literal, etc.). For example:

#define PI 3.14
#define SEVEN 3 + 4
#define FILENAME "header.h"

Note that the string "header.h" has literal type because
its type, const char*, is considered as such when referring
to a string literal. The rule for transforming for these macros
whose replacement text is an expression with literal type is:

// macro
#define A X

// C++11 declaration
constexpr auto A = X;

The type of the declared variable A is auto; it is deduced
from the type of the initializer expression X. The examples
above would be mapped to:

constexpr auto PI = 3.14;
constexpr auto SEVEN = 3 + 4;
constexpr auto FILENAME = "header.h";

A more advanced transformation, one that can fully type-
check a C++ expression, could automatically assign a concrete
type to the declaration of A. While our implementation does
not perform this transformation (we do not do full type
checking), we do want to highlight the fact that concrete types
can be deduced from the type of literal expressions.

It is not always possible to guarantee a correct transfor-
mation when the macro is dependent since the scope of the
free variable may differ from that of the macro’s definition.
However, if we determine that the free variables are previously

defined macros that are mapped to constant expression dec-
larations, then the transformation can proceed in the manner
given above. Consider:

#define R 10
#define PI 3.14
#define AREA_CIRCLE PI * R * R

The definition of AREA_CIRCLE depends on the identifiers
PI and R. Here, we have seen that both PI and R are previously
defined macros, and we know that both can be replaced by
constexpr variable declarations. That is a sufficient condition
for automatically replacing AREA_CIRCLE with a constexpr

declaration. The resulting program is:

constexpr auto R = 10;
constexpr auto PI = 3.14;
constexpr auto AREA_CIRCLE = PI * R * R;

Note that if the order of definitions was such that the
replacement would produce a compiler error, we choose to
preserve the original macros. Definition reordering is best done
in an assisted manner.

In all other cases, transformations must be considered care-
fully. Here, we give some examples where transformations are
possible, but should be guided by the programmer. Consider
the macro definition that refers to a function.

#define PRINT printf

This macro can be rewritten as a declaration.

auto PRINT = printf;

An automated transformation is possible only if printf

is known to name a function declaration or some other
global declaration. In other words, the transformation relies
on compiler knowledge. The type of the declarator depends
on the declaration. While the declaration above is suitable
for functions, an alias to a global variable would most likely
need to a reference. Declarations of this sort are not declared
constexpr because we do not want them to be evaluated at
compile time.

Consider a the following use of an expression alias macro.

#define SUM a + b

void summer()
{
int a = 1, b=2;
int c = SUM;

}

The dependent macro refers to identifiers that are actually
variable declarations in a future scope. There is a possible
transformation that can be applied to remove the macro, but
its automated application would require information from a
C++ front end about the variables referenced by the expanded
macro and the relative locations of the variable declarations,
the macro definition, and the use of the macro. Knowing all of
this, the corresponding transformation is to replace SUM with
a lambda function declared in the same scope as the local
variables:

void summer()
{
int a = 1, b=2;
auto SUM = [&a, &b]() { return a + b; };
int c = SUM();

}

Here, SUM is declared as a lambda function that captures its
non-local arguments by reference. Applying the transformation
also requires modification at the call site. We need to invoke
SUM as a function since it no longer expands to a sequence of
tokens.

Obviously, this is a complex transformation, and one that
we have not fully implemented. Our demacrofication tool is
capable of generating the replacement declaration, but we have
not yet calculated where the it should be placed in the resulting
code; the tool emits a note giving the transformed macro,
and suggesting the context in which it might be placed. This
allows the user to perform the transformation manually with
assistance from our tools.

B. Type Alias
A type alias is an object-like macro whose replacement text

can be recognized as a C++ type expressions. For example:

#define INT_VEC vector<int>
#define UINT unsigned int
#define UINT_PTR UINT*

We generally consider type aliases to be dependent even
though type expressions like unsigned int obviously refer
to a built-in types and could be considered closed. The
distinction matters little for this set of macros. Dependent
or not, each of these declarations represents a valid type
expression, which can easily be modeled as a C++11 alias
declaration. The general transformation for a type alias is:

// macro
#define A T

// C++11 declaration
using A = T;

Here, A is declared as an alias to the type expression T.
We prefer to using declarations to typedefs because a) the
syntax more clearly delineates the new type name from the
aliased type expression, and b) using declarations can be
parameterized over type arguments [18], a fact that we use
to transform function-like macros that define parameterized
type expressions (Section V-D).

This, the declarations corresponding to the macros above
are:

using INT_VEC = vector<int>;
using UINT = unsigned int;
using UINT_PTR = UINT*;

Note that we have not implemented this transformation
since recognizing type expressions is not straightforward.
We include the mapping for completeness and reserve the
implementation for future work.

C. Parameterized Expression
A parameterized expression is a function-like macro that

expands to an expression or a statement. For example:

#define MIN(A, B) ((A) < (B) ? (A) : (B))
#define ASSIGN(A, B) { B = A; }

The MIN macro is typical of inline functions written using
the C preprocessor. This classification of macros is used by
both Ernst et al. [3] and Mennie and Clarke [7].

The ASSIGN macro is different. Although it is a parame-
terized compound statement, it does not compute a value. It
performs an operation resulting in a side effect. This can be
still be implemented as an inline function, but we need to be
sure that any such argument B is passed by reference.

The mapping for the closed macros like MIN whose replace-
ment text is an expression (but not a statement) is:

// macro
#define F(A1, ..., An) X

// C++11 declaration
template <typename T1, ..., typename Tn>
auto F(T1&& A1, ..., Tn&& An)
-> decltype(X)

{
return decltype(X);

}

Here, F is a function-like macro with n arguments and
replacement text X. Because macro arguments are untyped,
we must allow expressions of any conceivable type to be
used as arguments to the function. Templates are capable of
providing this level of flexibility. As such, the resulting C++11
declarations is a function template with n distinct template
(type) parameters (Ti) corresponding to each of the n function
parameters (Ai).

The result type of the function uses the new late-binding
syntax for function return types. The result type, written
as decltype(X), is the deduced type of the expression
X. Without the ability to deduce the type of the resulting
expression, an automated, generic replacement would not be
possible. We would have to investigate all possible uses of
the macro in order to determine an appropriate result, if one
existed.

The function parameters are passed by forwarding into the
function body. Forwarding means that the actual type of the
instantiated function parameter will be determined by the type
of the function argument. Of all new C++11 features, perfect
forwarding is the least obvious and least well understood.
However, it suits this application perfectly. Consider a possible
use of the replaced function F (assuming F takes only 2
arguments).

int x = 0;
F(2, x);

Because the arguments are forwarded, the deduced template
argument types will preserve qualifiers on the type arguments.
The templat argument type deduced for T1 will be int because
2 is a literal having type int (there are no qualifiers). The type

deduced for T2 will be int& because x is an lvalue (it refers
to a non-const variable). In other words, the specialization of
F that is ultimately called after instantiation will be:

auto F<int, int&>(int A1, int& A2)
-> decltype(X)

The exact mapping for the MIN macro is:

template <typename T1, typename T2>
inline auto MIN(T1&& A, T2&& B)
-> decltype(((A) < (B) ? (A) : (B)))

{
return ((A) < (B) ? (A) : (B));

}

Although an automated replacement can be used exactly like
the original, we have introduced some additional complexity
into the definition that we would like to remove: the extra
parentheses, the deduced result type, the use of perfect for-
warding. The demacrofier working in tandem with a compiler
should be capable of fully replacing the macro with a function
declared in the traditional style.

The mapping for closed macros like ASSIGN whose replace-
ment text is classified as a statement is:

// macro
#define F(A1, ..., An) S

// C++11 declaration
template <typename T1, ..., typename Tn>
void F(T1&& A1, ..., Tn&& An)
{
S;

}

Because a statement has no result type we can omit the
deduced result type specification and the return statement.
We simply construct a void function with the same pattern
of template and function parameters above. The final mapping
of the ASSIGN algorithm is:

template <typename T1, typename T2>
inline void ASSIGN(T1&& A, T2&& B) {
B = A;

}

This illustrates another reason why perfect forwarding is so
well-suited to this task. First, we cannot detect the presence of
side effects in the replacement text of a macro. If an argument
is modified, then it needs to be passed by lvalue reference.
Second, we do not know how macros are used in the program
without substantial cooperation from the front end. We do
not know if arguments are intended to be passed by value,
reference, or constant expression. Perfect forwarding allows
us to defer decisions about parameter passing by adapting to
the usage at the call site.

Finally, the use of inlining in both mappings helps ensure
that the performance will be no worse than using the original
macro.

A parameterized expression can be dependent (having free
variables). In these cases, as with expression aliases, a trans-
formation must consider the properties of the free variables in
the expression. Consider the following:

#define OP(A, B) (X +
MAX((A),(B))-MIN((A),(B)))

Here, X, MIN and MAX are free variables. If we know that X
is an expression alias mapped to a declaration, and we know
that MIN and MAX are parameterized expressions mapped to
function templates, then the mapping is straightforward:

template <typename T1, typename T2>
inline auto OP(T1&& A, T1&& B)
-> decltype((X + MAX((A),(B))-MIN((A),(B))))

{
return (X + MAX((A),(B))-MIN((A),(B)));

}

This is similar to the analysis applied to dependent expres-
sion aliases. When free variables are not macros, then we
must rely on information from the compiler. Consider a 2nd
example:

#define Acc(a, b) { a += f(b); }

Before doing any modification we will have to ascertain
certain facts about f and the context in which Acc is called. If
f is a function or class type (i.e., f(b) invokes a constructor),
then we can proceed in the usual fashion.

template <typename T1, typename T2>
inline void Acc(T1&& a, T2&& b) {
a += f(b);

}

We note that the signature could be improved by examining
the arguments accepted by f. For example, if f only takes its
argument by value, then the function argument b could also
be passed by value. If f is polymorphic, taking const and
non-const arguments, then the forwarding approach is more
appropriate.

If f is a local function object or lambda expression in
the context in which Acc is called, then we would have to
transform Acc into a lambda function or function object.
The mechanism for doing so, and the problems inherent
in the transformation, are similar to those involved in the
transformation of expression aliases involving lambda function
transformations.

In either case, the requirement for compiler knowledge
places these transformations out of the scope of a straight-
forward, fully automated transformation. We defer to the user
in these cases.

D. Parameterized Type Alias
A function-like macro whose replacement text can be rec-

ognized as type expression is a parameterized type alias. For
example:

#define PTR_TYPE(T) T*
#define ValueType(I) \

typename value_type<I>::type;

We note that this last example is taken from Elements of
Programming where such macros are used to implement type
functions related to concepts [19]. This is one case where
macros are being used to implement “cutting edge” ideas
about principled generic programming. Fortunately, there is

an equivalent C++11 declaration (alias templates) that allows
us to avoid macros with this style of programming.

As with non-parameterized type aliases, the general trans-
formation is achieved using C++11 alias declarations.

// macro
#define A(T1, ..., Tn) X

// C++11 declaration
template <typename T1, ..., typename Tn>
using A = X;

The macro parameters Ti are mapped to corresponding
template parameters of an alias declaration. No additional
substitution is needed for X since the replacement text is
written as the resulting type. The declarations corresponding
to macros presented initially are:

template <typename T>
using Ptr = T*;

template <typename T>
using ValueType =
typename value_type<T>::type;

As with type aliases, dependent names in parameterized type
aliases are to be expected. However, because their resolution
requires knowledge from the C++ compiler, we have not
implemented their automated transformation. We include them
here because we believe them to be an important feature
of demacrofication and intend to support their transformation
fully in the future.

VI. IMPLEMENTATION
Our implementation is composed of three separate tools that

support the different stages of demacrofication shown in Fig-
ure 1. The cpp2cxx-suggest implements a straightforward
translation the macros into equivalent C++ according to the
criteria described in the previous sections. When automated
transformations are not possible or obvious, suggestions to the
user. The result of the application of this tool is a collection
of intermediate source code and configuration files.

The cpp2cxx-validate program iteratively manipulates
suggested transformations to find the largest possible set
that results in a functioning build. The cpp2cxx-finalize

program strips intermediate configuration and modifications to
the source code and generates the final build. These two tools
are discussed in more detail in Section VII-C.

The cpp2cxx-suggest program implements the initial
phases of demacrofication. The basic process by which
demacrofication happens is shown in Figure 3.

The goal of this process is to determine if there is a C++11
declaration that can be used to replace the definition of a
macro. Ultimately, we must make a decision to preserve a
macro in the original program or replace it.

The program iteratively considers macros in the order in
which they appear in the source text. Configurational macros,
and those whose replacement texts are partial syntax trees are
preserved (i.e., no transformation is applied).

The classification step attempts to determine if the replace-
ment text of the macro corresponds to a complete C++11

macro

configuration?

preserve transform

yes

syntax?

no

partial

classification exists?

classify

dependencies?

closeddependency analysis

dependentno

yes

fail pass

Fig. 3: The demacrofication process is a decision procedure
that determines if a macro can be replaced with a C++11
declaration.

expression, statement, declaration, or type. The current im-
plementation is a best-effort attempt to parse the sequence
of tokens in the replacement text in the absence of any C++
information. Because it operates on partial information, it is
not as accurate as we would like.

If the macro is dependent, the tool performs dependency
analysis to determine if a mapping exists. If the dependencies
can be resolved (i.e., finding previously defined macros that
map to declarations), the the transformation can be applied.
Otherwise, the macro is preserved, although the tool will emit
a suggestion for the possible transformation.

VII. EVALUATION
Our evaluation consists of three distinct activities.
• First, we applied the cpp2cxx-suggest tool to a 7

different C++ libraries in order to ascertain the extent
to which those libraries might be improved through
demacrofication.

• Second, we selected one of those libraries and migrated
it to C++11, acting as the user of our demacrofication
tools. The goal of this study was to understand, in detail,
the impact of our automated refactoring on a library and
the amount of effort required to complete the process.

• Finally, we selected two of the remaining libraries as
targets for our automated validation method. The goal
of this experiment was to determine the extent to which
we could reduce the amount of user intervention in the
demacrofication process.

We describe each activity separately.

A. Automatic Demacrofication
In the first experiment we applied our demacrofication tool

to seven C++ libraries comprising over 1.5 million lines of
non-comment, non-blank code. The purpose of the experiment

is to estimate the number of macros that might possibly be
refactored, either automatically or assisted by the programmer.
In other words, we are measuring the extent to which the pro-
gram might be improved (made more maintainable) through
demacrofication.

The cpp2cxx-suggest program is applied to each source
code file in a library. Files including non-C/non-C++ code
(e.g., lex/yacc files) were excluded from the test. The test
was configured such that every transformation that could be
identified was applied. The results of the demacrofication were
not compiled to test if the automated transformation would
preserve the build; we knew in advance that a naiv̈e application
of the tool would most likely result in a broken build. We
are only interested in the extent to which macros might be
removed from a library.

From the Table-I it is clear that we can remove a significant
number of macros which are neither empty nor partial. Hy-
pothetically, all macros in the closed and dependent category
can be replaced using one of the transformations described
in Section-VI. The results, however, are not quite 100% for
these cases because of a couple of issues. Definition ordering
issues prevent automatic refactoring, as do macros that would
be refactored as lambda functions. Also, we have not yet
implemented support for demacrofying type aliases.

B. Case Study
In this experiment we took one library (Crypto++-5.6.1) and

migrated it use the C++11 programming language. We used
the cpp2cxx-suggest tool to suggest and apply an initial set
of transformations. When the transformation was not obvious
or would break the build, we intervened and applied a correct
transformation by hand.

There were three primary goals of the study. First, we
wanted to identify the causes of compilation errors result-
ing from automatic transformation. Second, we want to
analyze those errors to determine how we might improve
our demacrofication tools by understanding the interaction
between preprocessor and source code declarations. Third,
we wanted to gauge the amount of effort required to fully
demacrofy a library.

As a result of the study, we found three situations where
we were able to correct the demacrofication manually. These
were later incorporated into the automated demacrofication
tool and implemented to produce suggestions (not automatic
transformations).

We found two instances where function-like macros were
being defined inside a function.

void f() {
#define S0(X) S[X]

int x = 10;
x += S0(x);

}

If we simply generate a new function definition, we will
produce an obviously incorrect program; C++ does not permit
function declarations inside other functions. However, the
macro can be refactored the macro as a lambda function. To

TABLE I: Results before validation

Preserved Complete
Package Name KSLOC Total Empty Partial Closed Dependent Actually

(NCNB) 1 Macros Macros Macros Demacrofied 2

Cryoto++-5.6.1 55 1020 164 373 300 183 457 (94.6%)
p7zip-9.20.1 96 1098 284 119 660 35 656 (94.3%)
scintilla-3.0.4 66 2694 52 15 2588 39 2595 (98.7%)
poco-1.4.3p1 144 2564 889 305 857 513 987 (72.0%)
facebook-hiphop-php-git 544 4951 1033 934 2538 446 2591 (86.8%)
wxWidgets-2.9.3 741 19262 2483 1923 11223 3633 12593 (84.7%)
ACE-6.0.6 151 5969 3227 613 1587 542 1455 (68.3%)

1 NCNB = Non-Comment, Non-Blank
2 As a percentage of closed + dependent

do so, we need to know the types of all arguments passed to
the function, and where to place the resulting declaration. For
example:

void f() {
int x = 10;
auto S0 = [&S](decltype(x) X)
{ return S[X]; };

x += S0(x);
}

Here, the non-local S is captured by reference, and the type
of the function argument is given as decltype(x). This is
effectively the same as forwarding x in a function template.
Determining where the declaration should be placed is not
straightforward. One method has been discussed by Mennie
and Clarke [7] based on the least common ancestor of each
macro use. Here, however, the placement must respect both
the declaration of captured local variables and the arguments
used to deduce the type of X. Additionally, that if S0 is invoked
multiple times in the same scope but with different variables,
then deducing the argument type of X is made much harder,
but is still possible. Our modified implementation will suggest
the refactoring for the lambda function but not the placement
of the declaration.

There are instances of dependent macros where free vari-
ables used inside the replacement text are member variables
of a class. For example:

class temp {
public:
int kelvin() const;
int fahrenheit() const;

private:
int cel;

};

#define TEMP_KEL 273 + cel
#define TEMP_FAR cel * 9 / 5 + 32

int temp::kelvin() const
{ return TEMP_KEL; }

int temp:: fahrenheit() const
{ return TEMP_FAR; }

Here demacrofication will result in a compilation error
because it is not possible to create a global lambda function
that captures references to non- static member variables of a

class. Even if we could, those members are private. Mennie
et al. [7] suggest that the macro replacement be placed inside
a function that used the macro:
int temp::get_temp_kel()
{
constexpr auto TEMP_KEL = 273 + temp_cel;
return TEMP_KEL;

}

If the macro is invoked inside multiple functions, this would
lead to a replication of the macro replacement. This would be
harmful to maintenance, so a better approach would be to
introduce a new, inline member function with the correct
semantics.

We modified our tool to recognize these cases and emit the
different possible transformations as suggestions to the user.

Although we found and characterized only two problems
of this nature, it is almost certain that there are more. We
plan to continue identifying and addressing macro/code usage
problems as we build and support our tools.

In addition to these problems, we also found a large number
of macros that included control flow statements (return,
goto, etc.), possibly nested to some level. Trying transform
these into functions would break the control flow of the
original program.

All told, we were able to refactor about 48.6% of the macros
in the library. This is about half of what was predicted from
our initial application of the cpp2cxx-suggest program. We
only modified 15 macros; the remainder were not readily
replaced with declarations. This took less than a day to
complete.

Mileage will vary for each project since every project
generally has its own style of macro use. The macros in
Crypto++ were largely computational in nature and tended to
include program fragments that could not be fully represented
as C++ program elements. This will not be true for all such
libraries.

C. Automatic Demacrofication with Validation
The third experiment was conducted to evaluate the extent

to which we could automatically generate a functioning build.
After initially demacrofying a library, it might not compile due
to some of the problems discussed above. We want to revert the
changes to the macros which were transformed incorrectly. To
do so, we built a tool cpp2cxx-validate that would apply

suggested transformations one macro at a time, attempting
to rebuild and retest the entire system in each iteration. The
reason for building incrementally is that some macros may
impact definitions in many different files.

In order to iteratively refactor macros, we wrap each gen-
erated macro in a condition that would allow it to be enabled
or disabled. For example:

// file name is "file.cpp"
#if defined(USE_PI_filecpp_3_8)
auto PI = 3.14;

#else
#define PI 3.14
#endif

The unique macro switch for the macro PI is
USE_PI_filecpp_3_8. Technically, the macro should
only be defined for C++11, but we omit those conditions
here. A special header file, DefinedIncludeGuards.h

contains the current list of macros introduced for each build.
A build automation script that does the following:

1) Use the ‘demacrofier’ to transform the program, wrapping
each new declaration in the style above.

2) Create an empty file, DefinedIncludeGuards.h.
3) For each suggested transformation,

a) add its macro switch to the include guard file
b) build the library and run the test suite
c) if the build or testing fails, remove the switch from the

guard file.
When the program finally terminates—it can take many

hours depending on the number of macros and size of the
library—the library will be fully transformed and compiled.
The order in which macro-switches were included was the
same as the order the macros were demacrofied. This simple
approach was taken to avoid complexity in determining the
best order in which demacrofied constructs should be intro-
duced into the program.

We applied this process to two libraries: p7zip and Scintilla.
Table-II lists the total number of macros that were finally
introduced into the respective libraries as compared to the
total number of macros that were potentially refactorable as
explained in Table-I

TABLE II: Results after validation

Package Name Total Potentially Finally
Macros Refactorable Validated 1

p7zip-9.20.1 1098 695 606 (87.2%)
scintilla-3.0.4 2694 2627 2585 (98.4%)

1 Percentage listed w.r.t. potentially refactorable macros

From the results in Table-II it is clear that some transfor-
mations could not preserve the build. This happened due to
various reasons, some of which have been described above.
Interestingly, the numbers here are much greater than those
reported for the manual work on the Crypto++ library. We
attribute this to the different styles of macro use in the libraries.
The style of macro use in p7zip and scintilla is more amenable
to demacrofication.

VIII. CONCLUSIONS AND FUTURE WORK
In this paper we presented an approach that can be used to

demacrofy C++ programs by replacing macro definitions with
C++11 declarations. We evaluated aspects of the approach and
our tooling in a number of different ways. The results of the
evaluation convince us that C++ programs can be effectively
demacrofied, often using straightforward and simple mapping.
There are, however, cases where the user is required to make
an informed decision about how a macro should be replaced.
We believe that the efficacy our automated approach would be
greatly improved if our tools had full knowledge of the C++
program structure.

In the future, we plan to further investigate the integration
of a compiler front end to supply the information needed to
improve our mappings decision-making capabilities. In partic-
ular, the ability to know about C++ declarations will make it
possible to automatically refactor a larger class of macros, and
perhaps improve our ability to place the transformed results.

References
[1] P. Pirkelbauer, D. Dechev, and B. Stroustrup, “Source Code Rejuvenation

is not Refactoring,” SOFSEM 2010: Theory and Practice of Computer
Science, pp. 639–650, 2010.

[2] B. Stroustrup, “The design and evolution of C++,” Reading, MA:
Addison-Wesley,— c1994, vol. 1, 1994.

[3] M. Ernst, G. Badros, and D. Notkin, “An empirical analysis of C
preprocessor use,” Software Engineering, IEEE Transactions on, vol. 28,
no. 12, pp. 1146–1170, 2002.

[4] B. Weinberger, C. Silverstein, G. Eitzmann, M. Mentovai, and T. Lan-
dray, “Google C++ style guide,” http://google-styleguide.googlecode.
com/svn/trunk/cppguide.xml, 2008.

[5] R. Seacord, Secure Coding in C and C++. Addison-Wesley Profes-
sional, 2005.

[6] B. Stroustrup, K. Carroll, and L. Aero, “C++ in safety-critical applica-
tions: The JSF++ coding standard,” 2006.

[7] C. Mennie and C. Clarke, “Giving meaning to macros,” in Program
Comprehension, 2004. Proceedings. 12th IEEE International Workshop
on. IEEE, 2004, pp. 79–85.

[8] C. Mennie, “Giving meaning to macros,” Waterloo, Ontario, Canada,
2004.

[9] J. Gravley and A. Lakhotia, “Identifying enumeration types modeled
with symbolic constants,” in Reverse Engineering, 1996., Proceedings
of the Third Working Conference on. IEEE, 1996, pp. 227–236.

[10] R. Khatchadourian, J. Sawin, and A. Rountev, “Automated refactoring
of legacy java software to enumerated types,” in ICSM. IEEE, 2007,
pp. 224–233.

[11] A. Sutton and J. Maletic, “How we manage portability and configuration
with the C preprocessor,” in Software Maintenance, 2007. ICSM 2007.
IEEE International Conference on. IEEE, 2007, pp. 275–284.

[12] I. D. Baxter and M. Mehlich, “Preprocessor conditional removal by
simple partial evaluation,” in WCRE, 2001, pp. 281–290.

[13] A. Garrido and R. Johnson, “Challenges of refactoring C programs,”
in Proceedings of the international workshop on Principles of software
evolution. ACM, 2002, pp. 6–14.

[14] L. Vidács, “Software maintenance methods for preprocessed languages,”
Ph.D. dissertation, University of Szeged, Szeged, Hungary, 2009.

[15] L. Vidács, Á. Beszédes, and R. Ferenc, “Columbus schema for c/c++
preprocessing,” in CSMR. IEEE Computer Society, 2004, pp. 75–84.

[16] R. Stallman and Z. Weinberg, “The C preprocessor. GNU Online
documentation,” 2001.

[17] B. Stroustrup and G. Dos Reis, “The Pivot: A brief overview,” https:
//parasol.tamu.edu/pivot.

[18] C++ Standards Committee and Becker, P. and others, “Programming
languages-c++(final committee draft). C++ standards committee paper
wg21/n3092= j16/10-0082,” 2010.

[19] A. Stepanov and P. McJones, Elements of programming. Addison-
Wesley Professional, 2009.

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
https://parasol.tamu.edu/pivot
https://parasol.tamu.edu/pivot

	Introduction
	Related Work
	Rejuvenating C++ Programs
	Classifying Macros
	Objects and Functions
	Completeness
	Dependency
	Configuration
	Definition Order

	Mapping Macros to C++
	Expression Alias
	Type Alias
	Parameterized Expression
	Parameterized Type Alias

	Implementation
	Evaluation
	Automatic Demacrofication
	Case Study
	Automatic Demacrofication with Validation

	Conclusions and Future work
	References

