

Interview by Julia Schmidt from “Heisse Developter” with Bjarne Stroustrup. August 2014.

• How did you get into programming?
o Looking for something to study in university, I aimed for some form of applied

mathematics and chose computer science. Fortunately for me, Computer Science
wasn’t applied math, and I quickly learned to love programming, machine
architecture, and operating systems. It just was – and is – an amazingly dynamic
and expanding field. The fact that it is a field in which an individual can make a
positive contribution to the world is important to me.

• Looking back at over thirty years of C++, what are the things you are most proud of
when it comes to what it has made possible? What are the things that make you throw
your hands up in horror, when looking back at the whole journey?

o I think the best thing I did for C++ itself was simply constructors and destructors.
They were part of the design in the first week. Most modern C++ techniques
depend on them. I’m most pleased with seeing C++ having a role in many of the
great scientific and engineering breakthroughs of our time, such as the sequencing
of the human genome, the Mars Rovers, and finding Higgs’ boson. Having
contributed – ever so slightly – to such historical endeavors is part of what keeps
me going. It is also exciting – and a bit scary – to know that C++ massively used
in just about every industry, such as communications, transport, agriculture, and
of course computing; it is a critical part of the world’s infrastructure and touches
our daily lives. I write this using software written in C++, on a computer designed
and implemented using C++, and will transmit the final text using communication
systems implemented using C++. Obviously, not all code we use is C++, but most
often some is. Finally, C++ has provided a stimulus to programming language an
programming tools development, partly through its direct contribution and partly
through spurring people on to do better.

Obviously, C++ has also been used for applications that I do not like, but let’s not
go there. Any powerful tool can be used for both good and evil. I have seen more
horrible C++ code than I could possibly have imagined! Horrible code is of
course not just a C++ problem, and maybe the worst code I have seen wasn’t
C++, but I feel a bit of responsibility for the C++ code. I suspect that problem is
far bigger than C++; it is a failure of establishing Computer Science as part of a
profession of software development and a failure of education. It seems that our
education systems produce some scientists, hordes of semi-skilled “coders,” and
far too few people with a balanced set of software development skills (e.g., a
grounding in mathematics, data structures, algorithms, machine architecture,
design and programming techniques, systems development, testing, quality
control, and a good grasp of an application area) and a professional attitude.
Trying to compensate for that through programming language design is possibly
impossible and – worse – makes introducing batter techniques and upgrading our
tool chains (including our programming languages) harder.

• In recent years, languages like Go or Rust have been positioned as C++ rivals. Why do

you think C++ still has a place in modern day programming? Are there things it can learn
from its younger competitors?

o C++ can learn from younger, as well as older languages. We try to learn, and
sometimes make progress. Conversely, newer languages learn from C++.

It is hard to compete with C++ in its code domains (e.g., see the Google language
comparison http://www.computing.co.uk/ctg/news/2076322/-winner-google-
language-tests) and C++ is not standing still. We have C++11 and now C++14
was delivered on time. C++ Is no longer the 1980s caricature that some people
seem to love to hate.

• Where do you see C++ in fifteen years, when it has been around for roughly 50 years?
o It is not unlikely that in 15 years it will still dominate areas of programming that

require serious attention to resource consumption and dependability. If not, some
language that has learned a lot from C++ will.

By then, I hope C++ will offer a rich selection of simple and specialized
concurrency models. I hope it will have a cleaner syntax, be more type safe, and
compile faster. I think is will still have a direct and efficient map to hardware,
very general zero-overhead abstraction facilities, and be even more precisely
specified. I expect the infrastructure of supporting tools, libraries, educational
facilities, and community support will have improved immensely.

• What are the main reasons developers should start to use C++14, seeing that many
compiler companies still haven't completed their C++11 support?

o Actually GCC and Clang claim 100% C++14 compliance today and Microsoft
C++ isn’t all that far behind. All the implementers treat C++11 and C++14 as one.
That is the right approach, C++14 is an incremental refinement of C++11 –
deliberately designed to “complete C++11”, rather than breaking significant new
ground.

The adoption of C++11 and C++14 has been much faster than the adoption of
C++98 were. The compilers are much better sooner now, there seems to be better
communication about the new features in the community, and many of the new
features simplify programming without requiring massive overhaul of a code
base.

• Do you think it is a good sign for the next iteration of C++, that C++14 was done so
quickly? Or was this only due to the relatively few changes when compared to the last
version of the language?

o When you ship a major product – such as the C++11 standard – there are features
that can’t be included because of lack of time. Some implications of a design you
learn only through initial use of the product. C++14 was define to be a “minor
release” to deal with such issues. However, C++14 is not just a “bug fix release.”

http://www.computing.co.uk/ctg/news/2076322/-winner-google-language-tests
http://www.computing.co.uk/ctg/news/2076322/-winner-google-language-tests

However, its scope was deliberately restricted so that we could ship on time. For
example:
 C++11 gave us lambdas; C++14 allows generic lambdas
 C++ gave us user-defined literals; C++14’s standard library allows

"Great!"s as a std::string literal (to contrast: "old" is a C-style string, a
zero-terminated array of characters) and 2s+45ms as a time duration.

 C++11 gave us unique_ptr; C++14 added make_unique() to create an
object and return a unique_ptr to it.

 C++11 gave us constexpr functions to simplify and generalize compile-
time evaluation; C++ allows if-statement and loops in constexpr functions
to make them far simpler to write.

In all, there are one or two dozen additions (depending on how you count). In
addition, the standard has been significantly clarified for implementers, so
portability is improved.

• Do movements like Continuous Delivery influence the way C++ is developed?
o Yes. Some of us (Notably, Herb Sutter from Microsoft, the committee’s

convener/chairman) decided that the “one new standard decade” model used by
most (all?) ISO standardized languages was not sufficiently flexible and
responsive. So we chose a model based on the idea of a major release followed by
a minor release and set a very ambitious goal of three years for the first minor
release (C++14). We are aiming for a major release in another three years
(C++17) and we just might make it.

In addition to the ISO standard proper, the committee works on Technical
Specifications (TSs). We see those as an intermediate step to the standard. They
are implemented and made available so that people can use them in real code
before final standardization. That was what was done for types such as
unordered_map and shared_ptr before the C++11 standard. There are about 11
TSs in various stages of completion. For example:

• Concurrency
• File system (complete)
• Concepts
• Parallelism
• Networking
• Transactional Memory
• Ranges

See https://isocpp.org/std/the-committee for a complete list and the current
status).

Concurrency and Parallelism will – I think – be the most important additions to
C++17, or possibly modules, but I expect that the most significant language
change will be “concepts.” Concepts are specifications of requirements for
template arguments. They will change the way we think about generic
programming and library design. Concepts are already shipping as a GCC branch
and more implementations are in the works

https://isocpp.org/std/the-committee

• What's your opinion on Apple's Swift?

o I don’t know enough to have an opinion.

• Are there any other new languages, such as Julia or Elixir, that you find interesting in
certain ways?

o There are lots of interesting ideas in the language design world, but I get my
major inspiration from system building. I came from the “systems” area of
computer science and I feel more comfortable talking about distributed systems or
cache effects than about type theory. For me, the applications are far more
interesting and important than the language features. By itself, an individual
programming language feature is boring.

• As there are some programmers out there, who claim C++ is hard to learn, what do you
think could be done to make it easier for people who are new to the language?

o Compared to many languages, C++ is hard to learn well. There is more to learn
because C++ can express more and is used for a more diverse set of application
areas than most languages. That learning can be most rewarding, though, because
it allows for an unsurpassed combination of flexibility and performance. C++
exposes the fundamental mechanism that other languages tend to hide – leaving
their programmers believing in “magic.”

However, this is not about language design, but about learning. C++11 and
C++14 are far easier to teach and learn well than C++98, and C++98 is far easier
to teach well than it is reputed to be. The problem is than many novices head
straight into the darkest corners of the language, ignoring simple solutions.
Similarly, many teachers insists on exposing innocent students to every obscure
detail of C before showing the C++ facilities that allow people to ignore those
complexities until they are needed (if ever). C++ facilities, such as vector and
string, simplify much code that is often written using arrays, pointers, macros,
and explicit memory management.

When I teach C++ to beginners, I use the modern C++ facilities from day #1 and
don’t expose students to arrays and pointers until eight weeks later. See my
Programming: Principles and Practice using C++. It has been used for many
thousands of students in classes as well as many thousands who study
programming on their own. There is a German version. The current English
edition is the second edition using C++11 and C++14 to simplify the introduction
of programming concepts and techniques. The German 2nd edition is in the works.

The other source of difficulty in learning C++ is the compatibility with C and
with earlier versions of C++. We can’t just ignore the facilities that were
introduced in the 1900s. There are billions of lines of C++ “out there” and most
don’t conform to the most modern taste. Stability over decades (compatibility) is
a major feature, and ISO C++ offers it. However, we should not emphasize the

oldest features when teaching beginners – but many people do. Unsurprisingly,
then things get difficult fast.

We can do much better. C++11 facilities such as range-for loops, uniform
initialization, lambda expressions, generalized constant expressions, and of course
the larger standard library can lead to much simpler code. Such code is also easier
to read, write, and maintain. I can’t describe these new features here, but there are
many examples on the web and my recent book A Tour of C++ gives an overview
of all of C++ (language and standard library) in just 180 pages. If you are an
experienced programmer, you can read it on a long plane or train trip. If you are a
real novice, you probably should look at PPP first.

