
Stroustrup C++ Extensions 1992

1

How to Write a C++ Language Extension Proposal for ANSI-X3J16/ISO-WG21

Bjarne Stroustrup and members of the X3J16 working group on extensions

1. Hello World

Below, §2-§7 is a letter that I and other members of the C++ standards
committee wrote to give people an idea of what is required for a new
feature to be accepted into the C++ language by the committee. After
reading it, the C++ Report editor asked (somewhat rhetorically, because
he knew most of the answers already): What is this committee? Who are
these people? What are they trying to do? Let me therefore try to answer
the questions in a way that provides background for the extensions
letter. I wrote the letter with input from several members of the working
group for extensions. This explanation of the workings of the C++
standards committee, however, reflects my own opinions only.

What is the C++ standards committee?"

There are actually several committees formed to standardize C++. The
first and largest is the American National Standards Institute's ANSI-
X3J16 committee. It was formed in 1989 at the request of HP with the
support of companies such as AT&T, DEC, and IBM. That committee is the
responsibility of the Computer and Business Equipment Manufacturers
Association, CBEMA, and it operates under its rules. In particular, this
means one-company-one-vote voting and a person who don't work for a
company counts as a company. A member can start voting on the second
meeting attended. Officially, the most important committee is the
International Standards Institute's ISO-WG-21. That committee operates
under international rules and is the one that will finally make the
result of the standards work an international standard. In particular,
this means one-country-one-vote voting. Other countries, including
Britain, Denmark, Germany, France, Japan, Russia, and Sweden now have
their own national committees for standardizing C++; these national
committees send requests, recommendations, and representatives to the
ANSI/ISO meetings. Basically, we have decided not to accept anything that
doesn't pass under both ANSI and ISO voting rules.

It is our aim to have the national standards be identical to the ISO
standard except for “quirks” such as different national standards for
numbering of pages in standards documents. It is the job of standards
committees to reach consensus. Consensus is formally defined as some high
percentage of the people voting. However, simply voting down a sizable
minority or ignoring important issues will do a committee no good. Nobody
can force you to adhere to a standard. Only if a standard is widely
accepted as being reasonable will it be widely accepted. On the other
hand, please remember that the job of the committee is to standardize

Stroustrup C++ Extensions 1992

2

C++; not to design C++++. Reminding people of that was one of the reasons
we decided to write and publish this letter.

The ANSI and ISO committees meet jointly three times a year. To avoid
confusion I will refer to them using the singular “committee.” The
meetings last a week out of which many hours are taken up with legally
mandated procedural stuff. Yet more hours are taken up by the kind of
confusion you might expect when 60 people try to understand what the
issues really are. Some daytime hours and several evenings are taken up
by “technical sessions” where major C++ issues, such as international
character handling and run-time type identification, and issues relevant
to standards work, such as formal methods and organizations of
international standardization bodies, are presented and discussed. The
rest of the time is mostly taken up by working group meetings and
discussions based on the reports from those working groups.

The current set of working groups are:

• C compatibility

• core language issues

• environments

• extensions

• international issues

• libraries

• syntax

Clearly, this is too much to handle in one week three times a year so
much of the actual work goes on between meetings. To aid communication we
use email a lot. Every meeting involves something like two inches memos
on double sided paper; these memos are sent in two packages: one to
arrive a couple of weeks before a meeting to help members prepare and one
a couple of weeks after to reflect work done between the first mailing
and the end of the meeting.

Who needs a standards committee anyway?
The standards committee provides two related services: It writes
standards documents and it is a forum where people can meet and discuss
technical problems of mutual interest.

Personally, I think people underestimate the importance of the second
role. In the short run, that is the most important role. The C++
committee is a place where compiler writers, tools writers, their friends
and representatives can meet and discuss language definition and - as far
as commercial rivalries allow – implementation issues. Thus, the C++
committee has already served the C++ community by helping the
implementations to become more similar (more “correct”) by providing a

Stroustrup C++ Extensions 1992

3

forum where issues can be aired. The alternative is a compiler writer
alone or together with a few friends finding questions that they see no
answer to in the ARM1 and having to make a guess. Maybe they would mail
me – many do – but I can't cope with every problem that arise and some
people do feel that dealing with an individual on such issues isn't quite
proper. Lack of communication inevitably leads to dialects. The committee
counteracts such trends. I don't see how someone who are not directly or
indirectly represented on the committee could currently hope to build a
tool that was in line with the assumptions made by the major players in
the C++ market.

We plan to send a draft standard out for public review in 1993 and if all
goes well we will have a C++ standard in 1995. Believe it or not, this is
an incredibly ambitious schedule for a programming language. To compare:
In all, it took 7 years to get a standard for C – and that was a smaller,
relatively older, and more established language.

We need a standards committee because we need a standard and because we
can't wait years for that standard to become official. We need a standard
because we want to have our programs portable, and even though a standard
doesn't guarantee portability then it eases porting by ensuring
fundamental similarity between implementations and by isolating
implementation dependencies to well-defined corners of the language. We
need a standard to make the construction of C++ tools as safe a bet as
possible. If C++ was nothing but a bunch of dialects it would be hard for
tools builders to decide what dialect to support. Alternatively, it could
be expensive to support several dialects. We need a standards committee
as the forum in which new language features and library ideas can be
proposed, evaluated, and possible accepted. Without such a forum the
fragmentation of C++ into dialects would be a certainty.

Who is on the C++ standards committee?
The C++ committee consists of a bunch of individuals of diverse
interests, concerns, and backgrounds. Some represents themselves, some
represent giant corporations. Some use PCs, some use UNIX boxes, some use
mainframes, etc. Some use C++, some don't. Some wants C++ to be more of
an OO language, others would have been more comfortable had ANSI C been
the end-point of C's evolution. Many have a background in C, some don't.
Some have a background in standards work, many don't. Some have a
computer science background, some don't. Some are programmers, some are
not. Some are language lawyers, some are not. Some serve end-users, some
are tools suppliers. Some are interested in large projects, some are not.
Some are interested in C compatibility, some are not. Except that all are
officially unpaid volunteers (though most represent companies) it is hard
to find a generalization that covers all. This is good; only a very
diverse group could ensure that the diverse interests of the C++
community were represented. It does make constructive discussion
difficult and slow at times. If you feel your interests might not be well

1 Ellis and Stroustrup: The Annotated C++ Reference Manual. Addison-Wesley
1989. The manual in this book, usually called the ARM, was voted the base
document for the C++ standards effort.

Stroustrup C++ Extensions 1992

4

enough covered, join, but please remember that the purpose of the
exercise is to produce a good standard in a timely manner.

Usually about 65 people attend a meeting and out of those about 40 attend
almost all meetings. The number of voting, alternate, and observing
members is in the region of 270. I'm an alternate member, meaning that I
represent my company, but someone else from my company votes. In this
case Jonathan Shopiro, our committee's edition for the standards
documents, votes for AT&T. Let me give you a idea about who is
represented here by simply glancing over a list of members and copying
out some of the better known names: Amdahl, Apple, AT&T, Bellcore,
Borland, CDC, Data General, DEC, Fujitsu, HP, IBM, Lucid, Mentor
Graphics, Microsoft, NIH, Prime Computer, SAS Institute, Silicon
Graphics, Sun, Tektronix, Texas Instruments, Unisys, US WEST, Wang,
Zortech, Object design, Ontologics, British Aerospace, Siemens Nixdorf,
Los Alamos National Labs MIPS, NEC, and Tandem Computers. This list is of
course horribly biased towards what companies I know of and towards large
companies, but I hope you get the idea that the industry is well
represented. Naturally, the individuals involved are as important as the
companies they represent, but I will refrain from turning this
introduction into an advert for my friends by naming them.

If you don't like what the committee does join it. If you do like what
the committee does you might like to join it anyway to ensure that isn't
taken over by people who don't. Standards work is incredibly wearing for
good system builders and there is always a chance that they gradually get
replaced by people who actually like sitting in meetings and writing
memos. I am told that the C++ committee has an unusually high proportion
of technically competent people and that the level of institutionalized
faction wars is unusually low. Help us keep it that way.

2. Introduction
First, let us try to dissuade you from proposing an extension to the C++
language. C++ is already too large and complicated for our taste and
there are millions of lines of C++ code “out there” that we endeavor not
to break. All changes to the language must undergo tremendous
consideration. Additions to it are undertaken with great trepidation.
Wherever possible we prefer to see programming techniques and library
functions used as alternatives to language extensions.

Many communities of programmers want to see their favorite language
construct or library class propagated into C++. Unfortunately, adding
useful features from diverse communities could turn C++ into a set of
incoherent features. C++ is not perfect, but adding features could easily
make it worse instead of better.

The aim of ANSI-X3J16/ISO-WG21 is standardization of C++, not the design
of C++++. The ANSI/ISO committees are trying hard to avoid inventing a
new language. Few – if any committee members – believe in “design by
committee.” The committee's purpose is to “Standardize existing
practice.” This means that any proposed extension, with only very rare
exception, should be implemented somewhere. However, as noted below, that

Stroustrup C++ Extensions 1992

5

a feature is implemented and useful doesn't in itself imply that it is
suitable for inclusion into C++.

Let us consider what is involved in making a proposal to the committee. A
modest proposal is going to cost the 100+ active members of the ANSI
committee at least a couple of hours each to review and debate with other
members and colleagues. It could easily cost the equivalent six full
working weeks of a senior technical person's time to consider and reject
a modest proposal. A complex proposal, such as exception handling or run-
time type identification costs at least ten or even a hundred times that.
A successful proposal implies more work. The cost to the C++ community of
implementing, documenting, and learning to use your proposal is
proportionally higher. If the ANSI/ISO committees and possibly the C++
community are going to make such a substantial investment in considering
your proposal, you should have a proposal worth considering. Thus, if you
want to make an extension to C++, you must be prepared to make a
“substantial investment” of your own time and effort to present the case
to the committee. Please remember that the committee members are
volunteers and that your proposal competes for time with other proposals
and with the professional and private lives of the committee members.

We do understand that missing features also carry costs - that is why we
consider extensions at all. However, please do realize that the time and
energy of every committee member is limited and that every proposal for
an extension not only carries a cost but also diverts time and energy
from the committees primary activity of creating an unambiguous,
comprehensible, and complete description of the language and the library.

3. Questions
Here is a list of questions that might help you to refine your suggestion
and possibly present it to the committee. The list presents criteria that
have been used to evaluate features for C++.

1. Is it precise? (Can we understand what you are suggesting?) Make a
clear precise statement of the change as it effects the current
draft of the language reference standard.

a. What changes to the grammar are needed?

b. What changes to the description of the language semantics are
needed?

c. Does it fit with the rest of the language?

2. What is the rationale for the extension? (Why do you want it, and
why would we also want it?)

a. Why is the extension needed?

b. Who is the audience for the change?

c. Is this a general purpose change?

Stroustrup C++ Extensions 1992

6

d. Does it affect one group of C++ language users more than
others?

e. Is it implementable on all reasonable hardware and systems?

f. Is it useful on on all reasonable hardware and systems?

g. What kind of programming and design styles does it support?

h. What kind of programming and design styles does it prevent?

i. What other languages (if any) provide such features?

j. Does it ease the design, implementation, or use of libraries?

3. Has it been implemented? (If so, has it been implemented in the
exact form that you are suggesting; and if not, why can you assume
that experience from “similar” implementations or other languages
will carry over to the feature as proposed?)

a. What affect does it have on a C++ implementation?

i. compiler organization

ii. run-time support

b. Was the implementation complete?

c. Was the implementation used by others than the
implementer(s)?

4. What difference does the feature have on code?

a. What does the code look like without the change?

b. What is the effect of not doing the change?

c. Does use of the new feature lead to demands for new support
tools?

5. What impact does the change have on efficiency and compatibility
with C and existing C++?

a. How does the change affect run-time efficiency?

i. of code that use the new feature

ii. of code that does not use the new feature

b. How does the change affect compile and link times?

c. Does the change affect existing programs

Stroustrup C++ Extensions 1992

7

i. Must C++ code that does not use the feature be re-
compiled?

ii. Does the change affect linkage to languages such as C
and Fortran?

d. Does the change affect the degree of static or dynamic
checking possible for C++ programs?

6. How easy is the change to document and teach

a. to novices?

b. to experts?

7. What reasons could there be for NOT making the extension? There
will be counter arguments and part of our job is to find and
evaluate them so you can just as well save time by presenting a
discussion.

a. Does it affect old code that does not use the construct?

b. Is it hard to learn?

c. Does it lead to demands for further extensions?

d. Does it lead to larger compilers?

e. Does it require extensive run-time support?

8. Are there

a. alternative ways of providing a feature to serve the need?

b. alternative ways of using the syntax suggested?

c. attractive generalizations of the suggested scheme

Naturally, this list is not exhaustive. Please expand it to cover points

relevant to your specific proposal and leave out points that are
irrelevant.

4. Remember the Vasa!
Then, if the proposal is accepted for detailed consideration in the
committee, you should be prepared to attend several ANSI/ISO committee
sessions or sessions of a national C++ standards committee. There - as a
member or as an observer - you could present your proposal and take part
in the debate about it and other proposals. If that is not possible try
to find someone on the committee who is willing to make the case on your
behalf.

Stroustrup C++ Extensions 1992

8

Please understand that most extensions to the language cannot be
accepted. Do not take it personally. Frequently a problem that is solved
with a language extension is also solved by suitable use of existing C++
features. Alternatively, a smaller extension to an existing feature or a
library class might do the job acceptably. This was the case with a
recent extension proposal for generalize overriding (see Ellis and
Stroustrup: The Annotated C++ Reference Manual §10.11,pg236) that Bjarne
Stroustrup made. If the designer of C++ is willing to learn and withdraw
a proposal, so should you.

Please also understand that there are dozens of reasonable extensions and
changes being proposed. If every extension that is reasonably well-
defined, clean and general, and would make life easier for a couple of
hundred or couple of thousand C++ programmers were accepted, the language
would more than double in size. We do not think this would be an
advantage to the C++ community.

We often remind ourselves of the good ship Vasa. It was to be the pride
of the Swedish navy and was built to be the biggest and most beautiful
battleship ever. Unfortunately, to accommodate enough statues and guns it
underwent major redesigns and extension during construction. The result
was that it only made it half way across Stockholm harbor before a gust
of wind blew it over and it sank killing about 50 people. It has been
raised and you can now see it in a museum in Stockholm. It is a beauty to
behold - far more beautiful at the time than its unextended first design
and far more beautiful today than if it had suffered the usual fate of a
17th century battle ship \(en but that is no consolation to its designer,
builders, and intended users.

5. Sample Proposal
So you still want to make an extension? Here is an example of a proposal
that almost made it. It was proposed by the ISO representative from
Sweden and strongly supported by the representative from Apple. There was
implementation and usage experience from both a C++ implementation and
from another language. In general, we liked it. The “snag” that caused
the proposers to withdraw the proposal is presented at the end.

New keyword for C++: inherited

Dag M. Brück

Department of Automatic Control
Lund Institute of Technology

Box 118, S-221 00 Lund, Sweden
E-mail: dag@control.lth.se

1. Description

Stroustrup C++ Extensions 1992

9

The keyword inherited is a qualified-class-name that represents an anonymous base class (RM, Section
5.1).

 inherited :: name

denotes the inherited member name. The meaning of inherited::name is that of name, pretending that
name is not defined in the derived class (RM, Section 10).

 struct A { virtual void handle(); };
 struct D : A { void handle(); };
 void D :: handle()
 {
 A::handle();
 inherited::handle();
 }

In this example A::handle and inherited::handle denote the same name. When a class is derived from
multiple base classes, access to inherited::name may be ambiguous, and can be resolved by qualifying
with the class name instead (RM, Section 10.1.1). The dominance rule does not apply to qualified
names, and consequently not to inherited::name (RM, Section 10.1.1).

2. Motivation

Many class hierarchies are built "incrementally," by augmenting the behavior of the base class with
added functionality of the derived class. Typically, the function of the derived class calls the function of
the base class, and then performs some additional operations:

 struct A { virtual void handle(int); };
 struct D : A { void handle(int); };

 void D :: handle(int i)
 {
 A::handle(i);
 // other stuff
 }

The call to handle() must be qualified to avoid a recursive loop. The example could with the proposed
extension be written as follows:

 void D :: handle(int i)
 {
 inherited::handle(i);
 // other stuff
 }

Stroustrup C++ Extensions 1992

10

Qualifying by the keyword inherited can be regarded as a generalization of qualifying by the name of a
class. It solves a number of potential problems of qualifying by a class name, which is particularly
important for maintaining class libraries.

2.1 Unambiguous inheritance

There is no way to tell whether A::handle() denotes the member of a base class or the member of some
other class, without knowing the inheritance tree for class D. The use of inherited::handle() makes the
inheritance relationship explicit, and causes an error message if handle() is not defined in a base class.

2.2 Changing name of base class

If the name of the base class A is changed, all occurrences of A::handle() must be changed too;
inherited::handle() need not be changed. Note that the compiler can probably not detect any forgotten
A::name if name is a data member or a static member function.

2.3 Changing base class

Changing the inheritance tree so class D is derived from B instead of A requires the same changes of
A::handle() as changing the name of the base class.

2.4 Inserting intermediate class

Assume that we start out with class D derived from A. We then insert a new class B in the inheritance
chain between A and D:

 struct A { virtual void handle(int); };
 struct B : A { void handle(int); };
 struct D : B { void handle(int); };

Calling A::handle() from D::handle() would still be perfectly legal C++ after this change, but probably
wrong anyway. On the other hand, inherited::handle() would now denote B::handle(), which I believe
reflects the intentions of the programmer in most cases.

2.5 Multiple inheritance

Most class hierarchies are developed with single inheritance in mind. If we change the inheritance tree
so class D is derived from both A and B, we get:

 struct A { virtual void handle(int); };
 struct B { virtual void handle(int); };
 struct D : A, B { void handle(int); };

 void D :: handle(int i)
 {
 A::handle(i); // unambiguous
 inherited::handle(i); // ambiguous
 }

Stroustrup C++ Extensions 1992

11

In this case A::handle() is legal C++ and possibly wrong, just as in the previous example. Using
inherited::handle() is ambiguous here, and causes an error message at compile time. I think this
behaviour is desirable, because it forces the person merging two class hierarchies to resolve the
ambiguity. On the other hand, this example shows that inherited may be of more limited use with
multiple inheritance.

3. Consequences

Programs currently using the identifier inherited must be edited before recompilation. Existing C++
code is otherwise still legal after the introduction of the keyword inherited. Existing libraries need not be
recompiled.

 I believe inherited has a small impact on the complexity of the language and on the difficulty of
implementing compilers.

 Although this is another feature to teach, I think inherited makes teaching and learning C++ easier.
This is not an entirely new concept, just a generalization of qualifying names by the name of a class.

4. Experience

This is not a new idea, and similar mechanisms are available in other object- oriented languages, notably
Object Pascal. The C++ compiler from Apple has inherited as described above, although its use has
been restricted to solving compatibility problems with Object Pascal.

5. Summary

This paper proposes the extension of C++ with the keyword inherited, a qualified-class-name used to
denote an inherited class member. The advantages are a clearer inheritance relationship and increased
programming safety.

The implementation cost is small, and the consequences for existing code minor.

6. Comments on the “inherited::” Proposal
Dag Brück is a member of the X3J16 working group for evaluating proposed
extensions; he volunteered his proposal for this use.

The proposal is well-argued and - as is the case with most proposals -
there was more expertise and experience available in the committee
itself. In this case the Apple representative had implemented the
proposal. During the discussion we soon agreed that the proposal was free
of major flaws. In particular, in contrast to earlier suggestions along
this line (some as early as the discussions about multiple inheritance in
1986) it correctly dealt with the ambiguities that can arise when
multiple inheritance is used. We also agreed that the proposal was
trivial to implement and would in fact be helpful to programmers.

Note that this is not sufficient for acceptance. We know of dozens of
minor improvements like this and at least a dozen major ones. If we
accepted all the language would sink under its own weight (remember the
Vasa!). We will never know if this proposal would have passed, though,
because at this point in the discussion, Michael Tiemann walked in and

Stroustrup C++ Extensions 1992

12

muttered something like “but we don't need that extension; we can write
code like that already.” When the murmur of “but of course we can't!” had
died down Michael showed us how:

class foreman : public employee {
 typedef employee inherited;
 // ...
 void print();
};

class manager : public foreman {
 typedef foreman inherited;
 // ...
 void print();
};

void manager::print()
{
 inherited::print();
 // ...
}

A further discussion of this example can be found on page 205 of
B.Stroustrup: The C++ Programming Language (2nd Edition); Addison-Wesley
1991. What we hadn't noticed was that the re-introduction of nested
classes into C++ had opened the possibility of controlling the scope and
resolution of type names exactly like other names.

Given this technique we decided that our efforts were better spent on
some other standards work. The benefits of inherited:: as a built-in
facility didn't sufficiently outweigh the benefits of what the programmer
could do with existing features. In consequence, we decided not to make
inherited:: one of the very few extensions we could afford to accept for
C++.

7. Addresses
If you still want to propose an extension please send mail (electronic
mail is preferred) to one of these X3J16 members that will make sure that
your proposal comes to the attention of the committee. Please make it
clear if you are making an official proposal. We all get lots of casual
suggestions and inquiries.

• Dmitry Lenkov, HP, dmitry@hpcldnl.hp.com (X3J16 chairman). 19447
Pruneridge Ave, MS 47LE. Cupertino CA95014. USA.

• Stephen D. Clamage, TauMetric, steve@taumet.com (acting X3J16 vice
chairman). 8765 Fletcher Pkwy, Ste. 301. La Mesa CA91942, USA.

• Bjarne Stroustrup, AT&T Bell Labs, bs@research.att.com (chairman of
the X3J16 working group for extensions). Murray Hill, NJ07974. USA.

mailto:dmitry@hpcldnl.hp.com
mailto:steve@taumet.com
mailto:bs@research.att.com

Stroustrup C++ Extensions 1992

13

• Dag Michael Br*:uck, Sweden, dag@Control.LTH.Se

• Philippe Gautron, France, gautron@rxf.ibp.fr

• Bill Gibbons, Apple, bgibbons@apple.com

• Ted Goldstein, Sun, tedg@sun.com

• Aron Insinga, DEC, insinga@tle.enet.dec.com

• Konrad Kiefer, Siemens, kk@ztivax.siemens.com

• Kim Knuttila, IBM, knuttila@torolab6.iinus1.ibm.com

• Martin O'Riordan, Microsoft, martino@microsoft.com

You might also consider becoming a member of X3J16 or one of the other
national standards committees. We can use all the constructive help we
can get.

Here is how you become a member of X3J16: Have your organization send a
letter to

 Dan Arnold
 X3 Secretariat, CBEMA
 311 First St NW, Suite 500
 Washington DC 20001-2178

saying that they want to join the X3J16 C++ Committee. Include a brief
statement of why -- the organization's interest in C++, standardization
efforts, or whatever. Specify who the representative(s) will be, and the
desired class(es) of membership: Principal, Alternate, or Observer.

Send a copy of the letter to

 Steve Clamage
 TauMetric Corporation
 8765 Fletcher Pkwy, Ste 301
 La Mesa, CA 91942

Include the address, phone, fax, and email address (as applicable) of
each person named.

The organization may become and remain a voting member by sending a
Principal or Alternate member to two of every three meetings. There are
three meetings per year, at least 2 of which are in the continental US or
Canada. The annual fee is currently $250, which allows the organization
one Principal member and one Alternate. X3 will send an invoice for the
fee. Do not send money with the letter.

Stroustrup C++ Extensions 1992

14

The organization may have only one Principal member, and as many
Alternate members as it wants, with additional fees for additional
members, but only one vote may be cast per organization. The organization
may have Observer members (in addition to or instead of regular members),
who need not attend meetings (but who may do so), and who may not vote at
meetings. The fee is the same for Observers.

Each member organization gets one copy of all the X3J16 documents as they
are issued (before and after each meeting), mailed to the Principal
member (or to one of the Observer members if there is no Principal
member). Each person on the membership list is added to the email
reflector for the committee. There are also reflectors for the various
working groups on particular topics, which any member may join.

	How to Write a C++ Language Extension Proposal for ANSI-X3J16/ISO-WG21
	Bjarne Stroustrup and members of the X3J16 working group on extensions
	1. Hello World
	What is the C++ standards committee?"
	Who needs a standards committee anyway?
	Who is on the C++ standards committee?

	2. Introduction
	3. Questions
	4. Remember the Vasa!
	5. Sample Proposal
	6. Comments on the “inherited::” Proposal
	7. Addresses

