
Computer Power User

Technology That Rocks
August 2002• Vol.2 Issue 8
Page(s) 108 in print issue

Back Door: Q&A With Bjarne
Stroustrup

Jump to first occurrence of: [BJARNE]

Many times when you see a successful product or
standard, a behind-the-scenes device is at least partly
responsible. The C++ programming language, which
Danish programmer Bjarne Stroustrup developed while at
AT&T in the early 1980s, is one of those behind-the-
scenes devices. C++ is a driving force for many
technological and computing advances and products in the
past 20 years. Stroustrup, who remains a computer
scientist with AT&T Labs and is head of the Large-Scale

Programming Research department, recently discussed several aspects of the
C++ language with CPU.

Q: After receiving your Ph.D. in computer science from Cambridge, was
designing a programming language like C++ your goal or did you have
some other goals?

Stroustrup: My goals had to do with building a distributed operating system.
C++ was conceived as a tool for that.

Q: What sparked your desire to design C++? Are those ideas still relevant
as the language evolves?

Stroustrup: My main aim with C++ was to be able to express ideas directly in
code and have that code execute with close-to-optimal performance. In other
words, to write programs that were both elegant and efficient. That’s still my aim,
and C++ allows me to do that in many areas that interest me. In particular, I still
experiment with distributed systems.

Q: It seems as though recent changes to C and C++ are driving the two
languages further apart. Is this a good thing? Or would you like to see the
languages move closer together?

Stroustrup: I would like to see the languages merged. I don’t see a philosophical
reason not to. I see many practical advantages for the user community from
removing incompatibilities, and though a merger would be technically difficult, I

id it t h i ll f ibl Wh th it i liti ll f ibl i th tt

http://www.smartcomputing.com/editorial/

There are people who would contradict every statement in my answer. I’ll soon be
putting a paper discussing the relationship between C and C++ on my home page
[www.research.att.com/~bs/homepage.html].

Q: Why do you think C++ remains so popular? After developing the
language, did you expect to still be talking about C++ 20 years later?

Stroustrup: C++ has amazing expressive power, and many people do know how
to use it. Much of today’s computing, communications, and commercial
infrastructure is C++: for example, Google, Internet Explorer, Photoshop, and
critical parts of your phone system. There is a reason for that, and it’s not that
C++ had the inside track as a proprietary language with superior marketing clout.
When developing C++, I was too busy [to think] about anything except how to
make it as good as I knew how to and to teach it to anyone who cared to listen or
read. If I had thought about it, I guess I would have thought that in 20 years
everybody would understand the principles, facilities, and techniques, so that then
there would have been no need for me to talk about C++. I would have been very
wrong.

Q: Everyone asks what you would do differently if you could redesign the
language. But I’d like to know what features you think were especially
good and successful in the original C++ design, features that you’d never
change.

Stroustrup: They certainly do (laughing). C++ is focused on classes. A class is
meant for expressing a concept. To do that well, a C++ class is a very general
and flexible construct. My idea was to make the facilities for defining and using
classes so general and flexible that I didn’t need to introduce special-purpose
facilities. Thus, in C++, a vector is a class, a list is a class, a string is a class, a
resource handle can be a class, a thread can be a class, etc. Where other
languages have built-in facilities, C++ relies on user-defined classes. The C++
standard library is written in Standard C++. I see class hierarchies and
parameterized classes as consequences of wanting general and flexible classes. In
the unlikely event that I should design another language, I’d try to strengthen
that view. More to the point, I am trying to make that view central to the
upcoming revision of the C++ standard.

Q: What has been the most important change to C++ over the years?

Stroustrup: The addition of templates. The notion of parameterized containers
was part of my original conception of a language supporting abstraction. I just
didn’t know how to design them to be flexible enough and efficient enough until
1988 or so. Improvements in that area continue; generic programming is one of
the most active areas of experimentation with C++.

Q: Do you consider C++ somewhat misunderstood? It seems like people
nitpick at perceived deficiencies, yet it’s the most widely used language.
Is it a case of other developers trying to knock down “the king of the
mountain”?

St t Th t’ t f th b t I d ’t thi k th t’ th i i t F

http://www.research.att.com/~bs/homepage.html

too many C++ programmers have been taught in a way that leaves out the most
effective features and facilities of C++. For example, I recently heard of a C++
class in a university that used a C++ textbook that presents C for the first 500
pages before showing a few examples of classes in the last 100 pages. It has no
use of the standard library, there was no use of templates, and no use of
exceptions. Basically, the view presented to the poor students was that of a C
programmer who had added a few half-digested pieces of C++ at the end as [so-
called] advanced material. The likelihood of a student of such a course becoming a
capable C++ programmer is very low. If that were C++, I too would be
complaining bitterly. Some approaches to C++ focusing on commercial
programming environments have similar problems.

In a weird way, that’s good news because that allows people to get much better
results from C++ without language changes or expensive new tools. I’d like to
encourage people who haven’t already to have a look at the standard library and
try to appreciate the techniques it uses. I’d also like to encourage people to have
a look at exception handling. If someone last looked at C++ five or 10 years ago,
they’ll notice that much has changed, for the better, I think.

For people who think of C++ as “just a better C,” I recommend a read of
“Learning Standard C++ as a New Language,” which can be downloaded from my
publications page [www.research.att.com/~bs/papers.html]. There, you can also
find other papers about C++. In general, my home page contains a fair amount of
information about C++ and links to more C++ sites. For example, you can find
the “Standard Library Exception Handling” appendix of “The C++ Programming
Language,” which should convince even experts that there is more to C++
exception handling than just a few language primitives. That appendix covers
programming techniques and standard library guarantees. Using the standard
library, and a moderate amount of supposedly advanced features, actually makes
C++ easier to learn and to use.

Q: You’ve said in the past that you don’t like proprietary languages. Could
you explain some of the advantages of having a language in the hands of
a democratic standards body?

Stroustrup: A proprietary language is typically designed to suit the majority of its
owner’s customers or a majority of people that the owner would like as customers.
A proprietary language tends to pander to such customers. These customers,
often being managers and executives, are often not primarily interested in
programming, and what the owner corporation wants to sell is typically not
primarily a programming language. For example, an owner corporation may take
its profits out of hardware sales or operating system sales. A language owner also
has a temptation to make incompatible changes to please major customers and,
also, to force users to upgrade. Every language owner tries to lock in users by
facilities that will not work on alternative suppliers’ hardware and/or operating
systems. A formal standard offers some minimal protection against that.

A democratic standards body, such as the ISO C++ committee, has other
problems, but not those. By definition, an ISO standard body must take
everybody’s concerns into account. As long as the committee is closely connected
t it d d iti th lt ill b thi th t i d

http://www.research.att.com/~bs/papers.html

enough for almost everybody rather than something that is ideal for a small
group. For me, a very important aspect of C++ as its standards process is that it
has not been dominated by concern for the mythical “average user.” Over the
years, most developers have unusual requirements and needs, so a language
deliberately restricted to prevent perceived misuse will get in the way. If you like,
you can see that opinion as a result of me working for a company that has greater
concern for scale, performance, and reliability than most.

Q: How much of your current time is spent with C++, making revisions,
overseeing its evolution, or simply maintaining it? Are you ever bored
with working on C++, or does it remain interesting?

Stroustrup: I spend between a third and half of my time looking at standards
issues, answering my C++ related email, giving C++ talks, etc. The rest of my
time is spent on more corporate activities and research. Often, those activities
have a C++ component also. I do get bored by some aspects of C++, but to
compensate, new challenges and opportunities appear all the time. There are also
so many interesting people to talk with.

Just now, the C++ standards process is at a critical stage. The ISO standard will
soon be five years old, and we need to look toward the future and prepare for a
revision. I have a key role in the plans for that revision, called C++0x. I’m the
chair of the evolution working group, which will try to define a direction for C++
and will eventually do much of the work on new language features. My personal
primary aims are: To make C++ a better language for systems programming and
library writing and to make it easier to teach and learn. To do that, and to
maintain stability for the huge user community, I propose to be restrained,
conservative, and minimalist with language changes while being aggressive and
opportunistic with additions to the standard library. My hope is that these aims
and policies will lead to a significantly better language.

Q: What are some other projects you’ve enjoyed working on in recent
years?

Stroustrup: Currently, my personal research has involved a framework for
experimenting with search trees and search tree algorithms and a library for the
support of C++ program transformation primarily aimed at better support for
distributed programming.

Kyle Schurman has been writing about computers and the c
industry for Smart Computing and CPU magazines for nearly 10
years. (Before you ask, yes, people did use DOS back in those

ancient times.)

omputing

